10.特色 多解法「2024海南中考,★☆」如图,AD是半圆O的直径,点B,C在半圆上,且$\overset{\frown}{AB}= \overset{\frown}{BC}= \overset{\frown}{CD}$,点P在$\overset{\frown}{CD}$上,若∠PCB= 130°,则∠PBA等于( )

A.105°
B.100°
C.90°
D.70°

A.105°
B.100°
C.90°
D.70°
答案:
B 如图,连接OB,OC. ∵AD是半圆O的直径,∴∠AOD = 180°. ∵$\overset{\frown}{AB}$ = $\overset{\frown}{BC}$ = $\overset{\frown}{CD}$,∴∠AOB = ∠BOC = ∠COD = 60°. ∵OA = OB = OC,∴△AOB和△BOC均是等边三角形,∴∠ABO = ∠CBO = ∠BCO = 60°,∴∠ABC = ∠ABO + ∠CBO = 120°.
[解法一] ∵∠BPC是$\overset{\frown}{BC}$所对的圆周角,∠BOC是$\overset{\frown}{BC}$所对的圆心角,
∴∠BPC = $\frac{1}{2}$∠BOC = 30°.
∵∠PCB = 130°,∴∠PBC = 180° - ∠BPC - ∠PCB = 180° - 30° - 130° = 20°,
∴∠ABP = ∠ABC - ∠PBC = 120° - 20° = 100°.故选B.
[解法二] 如图,连接OP. ∵OC = OP,∴△COP是等腰三角形,∵∠PCB = 130°,∴∠OPC = ∠OCP = ∠PCB - ∠BCO = 130° - 60° = 70°,∴∠COP = 180° - ∠OPC - ∠OCP = 180° - 70° - 70° = 40°,∴∠PBC = $\frac{1}{2}$∠COP = $\frac{1}{2}$×40° = 20°,∴∠PBA = ∠ABC - ∠PBC = 120° - 20° = 100°.故选B.
B 如图,连接OB,OC. ∵AD是半圆O的直径,∴∠AOD = 180°. ∵$\overset{\frown}{AB}$ = $\overset{\frown}{BC}$ = $\overset{\frown}{CD}$,∴∠AOB = ∠BOC = ∠COD = 60°. ∵OA = OB = OC,∴△AOB和△BOC均是等边三角形,∴∠ABO = ∠CBO = ∠BCO = 60°,∴∠ABC = ∠ABO + ∠CBO = 120°.

[解法一] ∵∠BPC是$\overset{\frown}{BC}$所对的圆周角,∠BOC是$\overset{\frown}{BC}$所对的圆心角,
∴∠BPC = $\frac{1}{2}$∠BOC = 30°.
∵∠PCB = 130°,∴∠PBC = 180° - ∠BPC - ∠PCB = 180° - 30° - 130° = 20°,
∴∠ABP = ∠ABC - ∠PBC = 120° - 20° = 100°.故选B.
[解法二] 如图,连接OP. ∵OC = OP,∴△COP是等腰三角形,∵∠PCB = 130°,∴∠OPC = ∠OCP = ∠PCB - ∠BCO = 130° - 60° = 70°,∴∠COP = 180° - ∠OPC - ∠OCP = 180° - 70° - 70° = 40°,∴∠PBC = $\frac{1}{2}$∠COP = $\frac{1}{2}$×40° = 20°,∴∠PBA = ∠ABC - ∠PBC = 120° - 20° = 100°.故选B.
11.「2025浙江杭州萧山期中,★☆」如图,AB为⊙O的直径,点C为圆上一点,若将劣弧AC沿弦AC翻折交AB于点D,连接CD,∠DCA= 44°,则∠BAC的度数为( )

A.23°
B.24°
C.25°
D.26°

A.23°
B.24°
C.25°
D.26°
答案:
A 如图,连接BC,∵AB是⊙O的直径,∴∠ACB = 90°,∵∠DCA = 44°,
∴∠BCD = 90° - 44° = 46°,根据翻折的性质,知$\overset{\frown}{ABC}$所对的圆周角为∠ADC,∵$\overset{\frown}{AC}$所对的圆周角为∠B,∴∠ADC + ∠B = 180°,∵∠ADC + ∠BDC = 180°,∴∠B = ∠BDC = $\frac{1}{2}$×(180° - 46°) = 67°,∴∠BAC = 90° - 67° = 23°.故选A.
A 如图,连接BC,∵AB是⊙O的直径,∴∠ACB = 90°,∵∠DCA = 44°,

∴∠BCD = 90° - 44° = 46°,根据翻折的性质,知$\overset{\frown}{ABC}$所对的圆周角为∠ADC,∵$\overset{\frown}{AC}$所对的圆周角为∠B,∴∠ADC + ∠B = 180°,∵∠ADC + ∠BDC = 180°,∴∠B = ∠BDC = $\frac{1}{2}$×(180° - 46°) = 67°,∴∠BAC = 90° - 67° = 23°.故选A.
12.「2024江苏连云港中考,★☆」如图,AB是圆的直径,∠1、∠2、∠3、∠4的顶点均在AB上方的圆弧上,∠1、∠4的一边分别经过点A、B,则∠1+∠2+∠3+∠4=

90
°.
答案:答案 90
解析 ∵AB是圆的直径,∴AB所对的弧是半圆,所对圆心角的度数为180°,∵∠1、∠2、∠3、∠4所对的弧的和为半圆,∴∠1 + ∠2 + ∠3 + ∠4 = $\frac{1}{2}$×180° = 90°.
解析 ∵AB是圆的直径,∴AB所对的弧是半圆,所对圆心角的度数为180°,∵∠1、∠2、∠3、∠4所对的弧的和为半圆,∴∠1 + ∠2 + ∠3 + ∠4 = $\frac{1}{2}$×180° = 90°.
13.「2024山西朔州怀仁期中,★☆」如图,AC,BD是⊙O的两条相交弦,∠ACB= ∠CDB= 60°,AC= 2$\sqrt{3}$,则⊙O的直径是______.


答案:
答案 4
解析 如图,作直径BM,连接CM,∴∠BCM = 90°,易知∠A = ∠D = ∠M = 60°,∵∠ACB = 60°,
∴∠ABC = 60°,∴△ABC是等边三角形,∴BC = AC = 2$\sqrt{3}$. 在Rt△BCM中,∠M = 60°,∴∠CBM = 30°,∴BM = 2CM,∵BC² + CM² = BM²,∴(2$\sqrt{3}$)² + CM² = 4CM²,∴CM = 2(舍负),∴BM = 4,∴⊙O的直径是4.
答案 4
解析 如图,作直径BM,连接CM,∴∠BCM = 90°,易知∠A = ∠D = ∠M = 60°,∵∠ACB = 60°,

∴∠ABC = 60°,∴△ABC是等边三角形,∴BC = AC = 2$\sqrt{3}$. 在Rt△BCM中,∠M = 60°,∴∠CBM = 30°,∴BM = 2CM,∵BC² + CM² = BM²,∴(2$\sqrt{3}$)² + CM² = 4CM²,∴CM = 2(舍负),∴BM = 4,∴⊙O的直径是4.
14.「2024浙江湖州南浔期末,★☆」如图,△ABC中,AB= AC,以AB为直径作⊙O,交BC边于点D,交CA的延长线于点E,连接AD,DE.
(1)求证:BD= CD.
(2)若AB= 5,DE= 4,求AD的长.

(1)证明:∵AB是⊙O的直径,∴∠ADB = 90°,∴AD⊥BD,又∵AB = AC,∴BD = CD.
(2)∵AB = 5,∴AC = AB = 5,∴∠B = ∠C. ∵∠B = ∠E,∴∠E = ∠C,∴DC = DE = 4. ∵∠ADB = 90°,∴∠ADC = 90°,∴AD = $\sqrt{AC^{2}-CD^{2}}$ = $\sqrt{5^{2}-4^{2}}$ =
(1)求证:BD= CD.
(2)若AB= 5,DE= 4,求AD的长.

(1)证明:∵AB是⊙O的直径,∴∠ADB = 90°,∴AD⊥BD,又∵AB = AC,∴BD = CD.
(2)∵AB = 5,∴AC = AB = 5,∴∠B = ∠C. ∵∠B = ∠E,∴∠E = ∠C,∴DC = DE = 4. ∵∠ADB = 90°,∴∠ADC = 90°,∴AD = $\sqrt{AC^{2}-CD^{2}}$ = $\sqrt{5^{2}-4^{2}}$ =
3
.答案:解析 (1)证明:∵AB是⊙O的直径,∴∠ADB = 90°,∴AD⊥BD,又∵AB = AC,∴BD = CD.
(2)∵AB = 5,∴AC = AB = 5,∴∠B = ∠C. ∵∠B = ∠E,∴∠E = ∠C,∴DC = DE = 4. ∵∠ADB = 90°,∴∠ADC = 90°,∴AD = $\sqrt{AC^{2}-CD^{2}}$ = $\sqrt{5^{2}-4^{2}}$ = 3.
(2)∵AB = 5,∴AC = AB = 5,∴∠B = ∠C. ∵∠B = ∠E,∴∠E = ∠C,∴DC = DE = 4. ∵∠ADB = 90°,∴∠ADC = 90°,∴AD = $\sqrt{AC^{2}-CD^{2}}$ = $\sqrt{5^{2}-4^{2}}$ = 3.
15.新 课标 推理能力「2025湖北荆州期中」如图,AB为⊙O的直径,点C,D为直径AB同侧圆上的点,且点D为$\overset{\frown}{AC}$的中点,过点D作DE⊥AB于点E,交AC于点G,延长DE,交⊙O于点F.
(1)如图①,若∠BAC= 30°,求证:$\overset{\frown}{CD}= \overset{\frown}{BC}$.
(2)如图②,若AC= 12,BE= 9,求⊙O的半径.

(1)如图①,若∠BAC= 30°,求证:$\overset{\frown}{CD}= \overset{\frown}{BC}$.
(2)如图②,若AC= 12,BE= 9,求⊙O的半径.

答案:
解析 (1)证明:如图①,连接OC,OD,∵∠BAC = 30°,∴∠BOC = 2∠BAC = 60°,∴∠AOC = 180° - 60° = 120°,∵点D为$\overset{\frown}{AC}$的中点,∴$\overset{\frown}{AD}$ = $\overset{\frown}{DC}$,∴∠AOD = ∠COD = 60°,∴∠COD = ∠COB,∴$\overset{\frown}{CD}$ = $\overset{\frown}{BC}$.
(2)如图②,连接OF,∵DE⊥AB,AB为⊙O的直径,∴$\overset{\frown}{AD}$ = $\overset{\frown}{AF}$,DE = EF,∵$\overset{\frown}{AD}$ = $\overset{\frown}{DC}$,∴$\overset{\frown}{AD}$ + $\overset{\frown}{DC}$ = $\overset{\frown}{AD}$ + $\overset{\frown}{AF}$,∴$\overset{\frown}{AC}$ = $\overset{\frown}{DF}$,∴DF = AC = 12,∴EF = 6,设⊙O的半径为r,则OE = BE - OB = 9 - r,在Rt△EOF中,EO² + EF² = OF²,即(9 - r)² + 6² = r²,解得r = 6.5,∴⊙O的半径为6.5.
解析 (1)证明:如图①,连接OC,OD,∵∠BAC = 30°,∴∠BOC = 2∠BAC = 60°,∴∠AOC = 180° - 60° = 120°,∵点D为$\overset{\frown}{AC}$的中点,∴$\overset{\frown}{AD}$ = $\overset{\frown}{DC}$,∴∠AOD = ∠COD = 60°,∴∠COD = ∠COB,∴$\overset{\frown}{CD}$ = $\overset{\frown}{BC}$.


(2)如图②,连接OF,∵DE⊥AB,AB为⊙O的直径,∴$\overset{\frown}{AD}$ = $\overset{\frown}{AF}$,DE = EF,∵$\overset{\frown}{AD}$ = $\overset{\frown}{DC}$,∴$\overset{\frown}{AD}$ + $\overset{\frown}{DC}$ = $\overset{\frown}{AD}$ + $\overset{\frown}{AF}$,∴$\overset{\frown}{AC}$ = $\overset{\frown}{DF}$,∴DF = AC = 12,∴EF = 6,设⊙O的半径为r,则OE = BE - OB = 9 - r,在Rt△EOF中,EO² + EF² = OF²,即(9 - r)² + 6² = r²,解得r = 6.5,∴⊙O的半径为6.5.