7. 如图,在$\triangle ABC$中,$BD$平分$\angle ABC$,$AD \perp BD$于点$D$,过点$D$作$DE // BC$,交$AC$于点$E$.若$AB = 10$,$BC = 16$,则线段$DE$的长为

3
.答案:7.3
解析:
证明:延长$AD$交$BC$于点$F$.
∵$BD$平分$\angle ABC$,
∴$\angle ABD=\angle FBD$.
∵$AD\perp BD$,
∴$\angle ADB=\angle FDB=90°$.
在$\triangle ABD$和$\triangle FBD$中,
$\begin{cases} \angle ABD=\angle FBD, \\ BD=BD, \\ \angle ADB=\angle FDB, \end{cases}$
∴$\triangle ABD\cong\triangle FBD(ASA)$.
∴$AD=FD$,$AB=FB=10$.
∵$BC=16$,
∴$FC=BC-FB=16-10=6$.
∵$DE// BC$,$AD=FD$,
∴$DE$是$\triangle AFC$的中位线.
∴$DE=\frac{1}{2}FC=\frac{1}{2}×6=3$.
答案:$3$
∵$BD$平分$\angle ABC$,
∴$\angle ABD=\angle FBD$.
∵$AD\perp BD$,
∴$\angle ADB=\angle FDB=90°$.
在$\triangle ABD$和$\triangle FBD$中,
$\begin{cases} \angle ABD=\angle FBD, \\ BD=BD, \\ \angle ADB=\angle FDB, \end{cases}$
∴$\triangle ABD\cong\triangle FBD(ASA)$.
∴$AD=FD$,$AB=FB=10$.
∵$BC=16$,
∴$FC=BC-FB=16-10=6$.
∵$DE// BC$,$AD=FD$,
∴$DE$是$\triangle AFC$的中位线.
∴$DE=\frac{1}{2}FC=\frac{1}{2}×6=3$.
答案:$3$
8. 如图,在$\triangle ABC$中,$CD \perp AB$于点$D$.若$AD = 2$,$BC = 8$,$CD = 6$,则$\triangle ABC$的外接圆的半径为

$\frac{4\sqrt{10}}{3}$
.答案:8.$\frac{4\sqrt{10}}{3}$
解析:
解:在$Rt\triangle CDB$中,$CD\perp AB$,$BC=8$,$CD=6$,
由勾股定理得$BD=\sqrt{BC^{2}-CD^{2}}=\sqrt{8^{2}-6^{2}}=\sqrt{64 - 36}=\sqrt{28}=2\sqrt{7}$,
$AB=AD + BD=2 + 2\sqrt{7}$,
在$Rt\triangle ADC$中,$AD=2$,$CD=6$,
由勾股定理得$AC=\sqrt{AD^{2}+CD^{2}}=\sqrt{2^{2}+6^{2}}=\sqrt{4 + 36}=\sqrt{40}=2\sqrt{10}$,
过点$C$作直径$CE$,连接$BE$,则$\angle CBE=90^{\circ}$,
$\because\angle A=\angle E$,$\angle ADC=\angle CBE=90^{\circ}$,
$\therefore\triangle ADC\backsim\triangle EBC$,
$\therefore\frac{AC}{EC}=\frac{CD}{BC}$,
$\therefore EC=\frac{AC· BC}{CD}=\frac{2\sqrt{10}×8}{6}=\frac{8\sqrt{10}}{3}$,
$\triangle ABC$外接圆半径为$\frac{EC}{2}=\frac{4\sqrt{10}}{3}$。
$\frac{4\sqrt{10}}{3}$
由勾股定理得$BD=\sqrt{BC^{2}-CD^{2}}=\sqrt{8^{2}-6^{2}}=\sqrt{64 - 36}=\sqrt{28}=2\sqrt{7}$,
$AB=AD + BD=2 + 2\sqrt{7}$,
在$Rt\triangle ADC$中,$AD=2$,$CD=6$,
由勾股定理得$AC=\sqrt{AD^{2}+CD^{2}}=\sqrt{2^{2}+6^{2}}=\sqrt{4 + 36}=\sqrt{40}=2\sqrt{10}$,
过点$C$作直径$CE$,连接$BE$,则$\angle CBE=90^{\circ}$,
$\because\angle A=\angle E$,$\angle ADC=\angle CBE=90^{\circ}$,
$\therefore\triangle ADC\backsim\triangle EBC$,
$\therefore\frac{AC}{EC}=\frac{CD}{BC}$,
$\therefore EC=\frac{AC· BC}{CD}=\frac{2\sqrt{10}×8}{6}=\frac{8\sqrt{10}}{3}$,
$\triangle ABC$外接圆半径为$\frac{EC}{2}=\frac{4\sqrt{10}}{3}$。
$\frac{4\sqrt{10}}{3}$
9. 如图,在$\triangle ABC$中,$AB = AC$,点$E$在边$BC$上(不与点$B,C$重合),满足$\angle DEF = \angle B$,且点$D$,$F$分别在边$AB,AC$上.
(1)求证:$\triangle BDE \backsim \triangle CEF$;
(2)当点$E$在$BC$的中点处时,求证:$FE$平分$\angle DFC$.

(1)求证:$\triangle BDE \backsim \triangle CEF$;
(2)当点$E$在$BC$的中点处时,求证:$FE$平分$\angle DFC$.
答案:9.(1)$\because AB = AC$,$\therefore\angle B = \angle C$.$\because\angle BDE = 180^{\circ} - \angle B - \angle DEB$,$\angle CEF = 180^{\circ} - \angle DEF - \angle DEB$,$\angle DEF = \angle B$,$\therefore\angle BDE = \angle CEF$.$\therefore \triangle BDE \sim \triangle CEF$(2)由(1)知,$\triangle BDE \sim \triangle CEF$,$\therefore\frac{BE}{CF}=\frac{DE}{EF}$.当点E在BC的中点处时,$BE = CE$.$\therefore\frac{CE}{CF}=\frac{ED}{EF}$,即$\frac{ED}{CE}=\frac{EF}{CF}$.$\because\angle DEF = \angle B = \angle C$,$\therefore \triangle DEF \sim \triangle ECF$.$\therefore\angle DFE = \angle EFC$.$\therefore FE$平分$\angle DFC$
10.(2025·眉山)如图,一次函数$y = ax + b$的图象与反比例函数$y = \frac{k}{x}$的图象相交于$A(1,4)$,$B(4,m)$两点,与$x$轴交于点$C$,点$D,A$关于原点$O$对称,连接$AD$.
(1)求一次函数和反比例函数的解析式;
(2)点$P$在$x$轴的负半轴上,且$\triangle AOC$与$\triangle POD$相似,求点$P$的坐标.

(1)求一次函数和反比例函数的解析式;
(2)点$P$在$x$轴的负半轴上,且$\triangle AOC$与$\triangle POD$相似,求点$P$的坐标.
答案:10.(1)把A(1,4)代入$y = \frac{k}{x}$,得$4 = \frac{k}{1}$$\therefore k = 4$.$\therefore$反比例函数的解析式为$y = \frac{4}{x}$.把B(4,m)代入$y = \frac{4}{x}$,得$m = \frac{4}{4} = 1$.$\therefore B(4,1)$.$\because$一次函数$y = ax + b$的图象与反比例函数$y = \frac{k}{x}$的图象相交于A(1,4),B(4,1)两点,$\therefore\begin{cases}4 = a + b,\\1 = 4a + b.\end{cases}$解得$\begin{cases}a = - 1,\\b = 5.\end{cases}$$\therefore$一次函数的解析式为$y = - x + 5$(2)$\because$点D,A关于点O对称,A(1,4),$\therefore$易得$OA = OD = \sqrt{1^{2} + 4^{2}} = \sqrt{17}$.$\because$易得直线AB与x轴交于C(5,0),$\therefore OC = 5$.$\because \triangle AOC$与$\triangle POD$相似,$\angle AOC = \angle POD$,$\therefore\frac{OA}{OD}=\frac{OC}{OP}$或$\frac{OA}{OP}=\frac{OC}{OD}$,即$\frac{\sqrt{17}}{\sqrt{17}}=\frac{5}{OP}$或$\frac{\sqrt{17}}{OP}=\frac{5}{\sqrt{17}}$.$\therefore OP = 5$或$OP = \frac{17}{5}$.$\because$点P在x轴的负半轴上,$\therefore P(-5,0)$或$(-\frac{17}{5},0)$
解析:
(1)将点$A(1,4)$代入反比例函数$y = \frac{k}{x}$,得$4=\frac{k}{1}$,解得$k = 4$,故反比例函数解析式为$y=\frac{4}{x}$。
将点$B(4,m)$代入$y=\frac{4}{x}$,得$m=\frac{4}{4}=1$,则$B(4,1)$。
将$A(1,4)$、$B(4,1)$代入一次函数$y = ax + b$,得$\begin{cases}a + b=4\\4a + b=1\end{cases}$,解得$\begin{cases}a=-1\\b=5\end{cases}$,故一次函数解析式为$y=-x + 5$。
(2)因为点$D$与$A$关于原点对称,$A(1,4)$,所以$D(-1,-4)$,$OA=OD=\sqrt{1^{2}+4^{2}}=\sqrt{17}$。
在$y=-x + 5$中,令$y = 0$,得$x = 5$,则$C(5,0)$,$OC = 5$。
因为$\triangle AOC$与$\triangle POD$相似,且$\angle AOC=\angle POD$,所以有两种情况:
①$\frac{OA}{OD}=\frac{OC}{OP}$,即$\frac{\sqrt{17}}{\sqrt{17}}=\frac{5}{OP}$,解得$OP = 5$。
②$\frac{OA}{OP}=\frac{OC}{OD}$,即$\frac{\sqrt{17}}{OP}=\frac{5}{\sqrt{17}}$,解得$OP=\frac{17}{5}$。
又因为点$P$在$x$轴负半轴上,所以$P(-5,0)$或$P(-\frac{17}{5},0)$。
综上,(1)一次函数解析式为$y=-x + 5$,反比例函数解析式为$y=\frac{4}{x}$;(2)点$P$的坐标为$(-5,0)$或$(-\frac{17}{5},0)$。
将点$B(4,m)$代入$y=\frac{4}{x}$,得$m=\frac{4}{4}=1$,则$B(4,1)$。
将$A(1,4)$、$B(4,1)$代入一次函数$y = ax + b$,得$\begin{cases}a + b=4\\4a + b=1\end{cases}$,解得$\begin{cases}a=-1\\b=5\end{cases}$,故一次函数解析式为$y=-x + 5$。
(2)因为点$D$与$A$关于原点对称,$A(1,4)$,所以$D(-1,-4)$,$OA=OD=\sqrt{1^{2}+4^{2}}=\sqrt{17}$。
在$y=-x + 5$中,令$y = 0$,得$x = 5$,则$C(5,0)$,$OC = 5$。
因为$\triangle AOC$与$\triangle POD$相似,且$\angle AOC=\angle POD$,所以有两种情况:
①$\frac{OA}{OD}=\frac{OC}{OP}$,即$\frac{\sqrt{17}}{\sqrt{17}}=\frac{5}{OP}$,解得$OP = 5$。
②$\frac{OA}{OP}=\frac{OC}{OD}$,即$\frac{\sqrt{17}}{OP}=\frac{5}{\sqrt{17}}$,解得$OP=\frac{17}{5}$。
又因为点$P$在$x$轴负半轴上,所以$P(-5,0)$或$P(-\frac{17}{5},0)$。
综上,(1)一次函数解析式为$y=-x + 5$,反比例函数解析式为$y=\frac{4}{x}$;(2)点$P$的坐标为$(-5,0)$或$(-\frac{17}{5},0)$。
11. 如图,在正方形$ABCD$中,连接$AC$,$E$是边$CD$上一点(不与点$C,D$重合),将$\triangle ADE$绕点$A$顺时针旋转$90°$得到$\triangle ABF$,连接$EF$,分别交$AC$,$AB$于点$P,G$.
(1)求证:$\triangle APF \backsim \triangle EPC$;
(2)求证:$PA^2 = PG · PF$;
(3)当$E$是边$CD$的中点时,求$\frac{GP}{EP}$的值.

(1)求证:$\triangle APF \backsim \triangle EPC$;
(2)求证:$PA^2 = PG · PF$;
(3)当$E$是边$CD$的中点时,求$\frac{GP}{EP}$的值.
答案:11.(1)$\because$四边形ABCD是正方形,$\therefore\angle ACB = \angle ACD = 45^{\circ}$.由旋转的性质可知,AF = AE,$\angle FAE = 90^{\circ}$,$\therefore\angle AFP = \angle ECP = 45^{\circ}$.$\because\angle AFP = \angle EPC$,$\therefore \triangle AFP \sim \triangle EPC$(2)$\because$四边形ABCD是正方形,$\therefore\angle CAB = 45^{\circ}$.$\because\angle AFE = 45^{\circ}$,$\therefore\angle PAG = \angle PFA$.又$\because\angle APG = \angle FPA$,$\therefore \triangle APG \sim \triangle FPA$.$\therefore\frac{PA}{PF}=\frac{PG}{PA}$.$\therefore PA^{2} = PG· PF$(3)设正方形的边长为2a.在正方形ABCD中,$AB// CD$,$\angle ABC = \angle D = 90^{\circ}$.$\because E$是CD的中点,$\therefore DE = EC = a$.$\because \triangle ADE$绕点A顺时针旋转90°得到$\triangle ABF$,$\therefore\angle ABF = \angle D = 90^{\circ}$,$DE = BF = a$.$\because\angle ABC = 90^{\circ}$,$\therefore$点F,B,C共线.$\because DE = EC = BF = a$,$BC = 2a$,$\therefore CF = 3a$.$\because BG// EC$,$\therefore \triangle FBG \sim \triangle FCE$.$\therefore BG:CE = FB:FC = 1:3$.$\therefore BG = \frac{1}{3}a$.$\therefore AG = \frac{5}{3}a$.
$\because AG// CE$,$\therefore \triangle AGP \sim \triangle CEP$.$\therefore\frac{GP}{EP}=\frac{AG}{CE}=\frac{\frac{5}{3}a}{a}=\frac{5}{3}$
$\because AG// CE$,$\therefore \triangle AGP \sim \triangle CEP$.$\therefore\frac{GP}{EP}=\frac{AG}{CE}=\frac{\frac{5}{3}a}{a}=\frac{5}{3}$