1. 如图,在$\triangle ABC$中,$BA = BC = 20\ cm$,$AC = 30\ cm$,点$P$从点$A$出发,沿$AB$以$4\ cm/s$的速度向点$B$运动,同时点$Q$从点$C$出发,沿$CA$以$3\ cm/s$的速度向点$A$运动,当其中一点到达终点时,另一点也停止运动,连接$PQ$,$BQ$.设运动时间为$x\ s$.
(1) 当$PQ// BC$时,求$x$的值.
(2) $\triangle APQ$与$\triangle CQB$能否相似?若能,求出$AP$的长;若不能,请说明理由.

(1) 当$PQ// BC$时,求$x$的值.
(2) $\triangle APQ$与$\triangle CQB$能否相似?若能,求出$AP$的长;若不能,请说明理由.
答案:(1)当$PQ// BC$时,$AP:AB = AQ:AC$。由题意,得$AP = 4x cm$,$AQ = (30 - 3x) cm$。$\therefore\frac{4x}{20}=\frac{30 - 3x}{30}$,解得$x = \frac{10}{3}$。$\therefore x$的值为$\frac{10}{3}$。
(2)能。$\because BA = BC$,$\therefore\angle A = \angle C$。$\therefore$分两种情况讨论:
①当$\triangle APQ\sim\triangle CQB$时,$\frac{AP}{CQ}=\frac{AQ}{CB}$,即$\frac{4x}{3x}=\frac{30 - 3x}{20}$,解得$x = \frac{10}{9}$。$\therefore AP = \frac{40}{9} cm$。
②当$\triangle APQ\sim\triangle CBQ$时,$\frac{AP}{CB}=\frac{QA}{QC}$,即$\frac{4x}{20}=\frac{30 - 3x}{3x}$,解得$x = 5$或$x = -10$(不合题意,舍去)。$\therefore PA = 20 cm$。
综上所述,当$AP$的长为$\frac{40}{9} cm$或$20 cm$时,$\triangle APQ$与$\triangle CQB$相似。
(2)能。$\because BA = BC$,$\therefore\angle A = \angle C$。$\therefore$分两种情况讨论:
①当$\triangle APQ\sim\triangle CQB$时,$\frac{AP}{CQ}=\frac{AQ}{CB}$,即$\frac{4x}{3x}=\frac{30 - 3x}{20}$,解得$x = \frac{10}{9}$。$\therefore AP = \frac{40}{9} cm$。
②当$\triangle APQ\sim\triangle CBQ$时,$\frac{AP}{CB}=\frac{QA}{QC}$,即$\frac{4x}{20}=\frac{30 - 3x}{3x}$,解得$x = 5$或$x = -10$(不合题意,舍去)。$\therefore PA = 20 cm$。
综上所述,当$AP$的长为$\frac{40}{9} cm$或$20 cm$时,$\triangle APQ$与$\triangle CQB$相似。
2. 如图,在$ Rt\triangle ABC$中,$\angle ACB = 90°$,$AC = 8$,$BC = 6$,$CD \perp AB$于点$D$. 点$P$从点$D$出发,沿线段$CD$向点$C$运动,点$Q$从点$C$出发,沿线段$AC$向点$A$运动,两点同时出发,速度都为每秒1个单位长度,当点$P$运动到点$C$时,两点都停止运动,连接$PQ$.设运动时间为$t$秒.
(1) 求线段$CD$的长.
(2) 当$t$为何值时,以$C$,$P$,$Q$为顶点的三角形与$\triangle ABC$相似?
(3) 是否存在$t$,使得$\triangle CPQ$为等腰三角形?若存在,求出满足条件的$t$的值;若不存在,请说明理由.

(1) 求线段$CD$的长.
(2) 当$t$为何值时,以$C$,$P$,$Q$为顶点的三角形与$\triangle ABC$相似?
(3) 是否存在$t$,使得$\triangle CPQ$为等腰三角形?若存在,求出满足条件的$t$的值;若不存在,请说明理由.
答案:
(1)$\because$在$Rt\triangle ABC$中,$\angle ACB = 90^{\circ}$,$AC = 8$,$BC = 6$,$\therefore$根据勾股定理,得$AB = \sqrt{AC^{2} + BC^{2}}=\sqrt{8^{2} + 6^{2}} = 10$。$\because S_{\triangle ABC}=\frac{1}{2}AC· BC=\frac{1}{2}AB· CD$,$\therefore CD = \frac{AC· BC}{AB}=\frac{8×6}{10}=\frac{24}{5}$。
(2)由(1)知,$CD = \frac{24}{5}$。由题意知,$CQ = t$,$DP = t$。$\therefore CP = CD - DP = \frac{24}{5} - t$。$\because\angle ACB = 90^{\circ}$,$\therefore\angle ACD + \angle BCD = 90^{\circ}$。$\because CD\perp AB$,$\therefore\angle B + \angle BCD = 90^{\circ}$。$\therefore\angle ACD = \angle B$。$\therefore$分两种情况讨论:
①当$\triangle CPQ\sim\triangle BCA$时,$\frac{CP}{BC}=\frac{CQ}{BA}$,即$\frac{\frac{24}{5} - t}{6}=\frac{t}{10}$,解得$t = 3$。
②当$\triangle CPQ\sim\triangle BAC$时,$\frac{CP}{BA}=\frac{CQ}{BC}$,即$\frac{\frac{24}{5} - t}{10}=\frac{t}{6}$,解得$t = \frac{9}{5}$。
综上所述,当$t$的值为$3$或$\frac{9}{5}$时,以$C$,$P$,$Q$为顶点的三角形与$\triangle ABC$相似。
(3)存在。
①当$CQ = CP$时,$t=\frac{24}{5} - t$,解得$t = \frac{12}{5}$。
②当$PQ = PC$时,如图①,过点$P$作$PH\perp AC$,垂足为$H$。$\because\angle ACB = \angle CDB = 90^{\circ}$,$\therefore\angle HCP = 90^{\circ} - \angle DCB = \angle B$。$\because PH\perp AC$,$\therefore\angle CHP = 90^{\circ}$。$\therefore\angle CHP = \angle BCA$。$\therefore\triangle CHP\sim\triangle BCA$。$\therefore\frac{CH}{BC}=\frac{CP}{BA}$。
$\because PQ = PC$,$PH\perp QC$,$\therefore QH = CH = \frac{1}{2}QC = \frac{1}{2}t$。$\therefore\frac{\frac{t}{2}}{6}=\frac{\frac{24}{5} - t}{10}$,解得$t = \frac{144}{55}$。
③当$QC = QP$时,如图②,过点$Q$作$QE\perp CP$,垂足为$E$。同理,可得$\triangle CEQ\sim\triangle BCA$。$\therefore\frac{CE}{BC}=\frac{CQ}{BA}$。$\because QC = QP$,$QE\perp CP$,$\therefore CE = EP = \frac{1}{2}PC = \frac{1}{2}(\frac{24}{5} - t)$。$\therefore\frac{\frac{1}{2}(\frac{24}{5} - t)}{6}=\frac{t}{10}$,解得$t = \frac{24}{11}$。
综上所述,存在$t$,使得$\triangle CPQ$为等腰三角形,此时$t$的值为$\frac{12}{5}$或$\frac{144}{55}$或$\frac{24}{11}$。

(1)$\because$在$Rt\triangle ABC$中,$\angle ACB = 90^{\circ}$,$AC = 8$,$BC = 6$,$\therefore$根据勾股定理,得$AB = \sqrt{AC^{2} + BC^{2}}=\sqrt{8^{2} + 6^{2}} = 10$。$\because S_{\triangle ABC}=\frac{1}{2}AC· BC=\frac{1}{2}AB· CD$,$\therefore CD = \frac{AC· BC}{AB}=\frac{8×6}{10}=\frac{24}{5}$。
(2)由(1)知,$CD = \frac{24}{5}$。由题意知,$CQ = t$,$DP = t$。$\therefore CP = CD - DP = \frac{24}{5} - t$。$\because\angle ACB = 90^{\circ}$,$\therefore\angle ACD + \angle BCD = 90^{\circ}$。$\because CD\perp AB$,$\therefore\angle B + \angle BCD = 90^{\circ}$。$\therefore\angle ACD = \angle B$。$\therefore$分两种情况讨论:
①当$\triangle CPQ\sim\triangle BCA$时,$\frac{CP}{BC}=\frac{CQ}{BA}$,即$\frac{\frac{24}{5} - t}{6}=\frac{t}{10}$,解得$t = 3$。
②当$\triangle CPQ\sim\triangle BAC$时,$\frac{CP}{BA}=\frac{CQ}{BC}$,即$\frac{\frac{24}{5} - t}{10}=\frac{t}{6}$,解得$t = \frac{9}{5}$。
综上所述,当$t$的值为$3$或$\frac{9}{5}$时,以$C$,$P$,$Q$为顶点的三角形与$\triangle ABC$相似。
(3)存在。
①当$CQ = CP$时,$t=\frac{24}{5} - t$,解得$t = \frac{12}{5}$。
②当$PQ = PC$时,如图①,过点$P$作$PH\perp AC$,垂足为$H$。$\because\angle ACB = \angle CDB = 90^{\circ}$,$\therefore\angle HCP = 90^{\circ} - \angle DCB = \angle B$。$\because PH\perp AC$,$\therefore\angle CHP = 90^{\circ}$。$\therefore\angle CHP = \angle BCA$。$\therefore\triangle CHP\sim\triangle BCA$。$\therefore\frac{CH}{BC}=\frac{CP}{BA}$。
$\because PQ = PC$,$PH\perp QC$,$\therefore QH = CH = \frac{1}{2}QC = \frac{1}{2}t$。$\therefore\frac{\frac{t}{2}}{6}=\frac{\frac{24}{5} - t}{10}$,解得$t = \frac{144}{55}$。
③当$QC = QP$时,如图②,过点$Q$作$QE\perp CP$,垂足为$E$。同理,可得$\triangle CEQ\sim\triangle BCA$。$\therefore\frac{CE}{BC}=\frac{CQ}{BA}$。$\because QC = QP$,$QE\perp CP$,$\therefore CE = EP = \frac{1}{2}PC = \frac{1}{2}(\frac{24}{5} - t)$。$\therefore\frac{\frac{1}{2}(\frac{24}{5} - t)}{6}=\frac{t}{10}$,解得$t = \frac{24}{11}$。
综上所述,存在$t$,使得$\triangle CPQ$为等腰三角形,此时$t$的值为$\frac{12}{5}$或$\frac{144}{55}$或$\frac{24}{11}$。