9. 已知点$A$,$B$,$C$,$D$在同一平面内,有下列条件:①$AB // CD$;②$AB = CD$;③$BC // AD$;④$BC = AD$;⑤$AC ⊥ BD$;⑥$AC$平分$\angle DAB$与$\angle DCB$。其中,能满足四边形$ABCD$是菱形的$3$个条件是
答案不唯一,如①②⑤
(填一组序号即可)。答案:9.答案不唯一,如①②⑤
10. (2025·启东期末)如图,把$3$个相同的矩形填充到菱形$ABCD$中,如果测得每个矩形的周长为$4\sqrt{2}\mathrm{ cm}$,那么菱形$ABCD$的周长为

16
$\mathrm{cm}$。答案:10.16
11. 如图,在$□ ABCD$中,$AB = 2$,$\angle ABC$的平分线与$\angle BCD$的平分线交于点$E$。若点$E$恰好在边$AD$上,则$BE^{2} + CE^{2}$的值为

16
。答案:11.16
解析:
证明:
∵四边形$ABCD$是平行四边形,
∴$AD// BC$,$AB=CD=2$,$AD=BC$,$\angle ABC+\angle BCD=180°$。
∵$BE$平分$\angle ABC$,$CE$平分$\angle BCD$,
∴$\angle ABE=\angle EBC=\frac{1}{2}\angle ABC$,$\angle DCE=\angle ECB=\frac{1}{2}\angle BCD$。
∵$AD// BC$,
∴$\angle AEB=\angle EBC=\angle ABE$,$\angle DEC=\angle ECB=\angle DCE$,
∴$AE=AB=2$,$DE=CD=2$,
∴$AD=AE+DE=4$,即$BC=4$。
∵$\angle EBC+\angle ECB=\frac{1}{2}(\angle ABC+\angle BCD)=90°$,
∴$\angle BEC=90°$。
在$\mathrm{Rt}\triangle BEC$中,由勾股定理得:
$BE^2+CE^2=BC^2=4^2=16$。
16
∵四边形$ABCD$是平行四边形,
∴$AD// BC$,$AB=CD=2$,$AD=BC$,$\angle ABC+\angle BCD=180°$。
∵$BE$平分$\angle ABC$,$CE$平分$\angle BCD$,
∴$\angle ABE=\angle EBC=\frac{1}{2}\angle ABC$,$\angle DCE=\angle ECB=\frac{1}{2}\angle BCD$。
∵$AD// BC$,
∴$\angle AEB=\angle EBC=\angle ABE$,$\angle DEC=\angle ECB=\angle DCE$,
∴$AE=AB=2$,$DE=CD=2$,
∴$AD=AE+DE=4$,即$BC=4$。
∵$\angle EBC+\angle ECB=\frac{1}{2}(\angle ABC+\angle BCD)=90°$,
∴$\angle BEC=90°$。
在$\mathrm{Rt}\triangle BEC$中,由勾股定理得:
$BE^2+CE^2=BC^2=4^2=16$。
16
12. 如图,在四边形$ABCD$中,$BD$平分$\angle ABC$,$E$,$F$分别是$AD$,$BC$的中点。若$CD = 2AB = 4$,$\angle ABC = 2\angle C = 60^{\circ}$,则$EF$的长为

$\sqrt{5}$
。答案:
12.$\sqrt{5}$ 解析:$\because \angle ABC=2\angle C = 60^{\circ},\therefore \angle C = 30^{\circ}.\because BD$平分$\angle ABC,\therefore \angle ABD = \angle DBC = 30^{\circ}.\therefore \angle BDC = 120^{\circ}$. 如图,取$BD$的中点$G$,连接$EG$,$FG$.又$\because E$,$F$分别是$AD$,$BC$的中点,$\therefore EG // AB$,$EG =\frac{1}{2}AB$,$FG // CD$,$FG =\frac{1}{2}CD$.
$\therefore \angle EGD = \angle ABD = 30^{\circ}$,$\angle FGD = 180^{\circ} - \angle BDC = 60^{\circ}$.
$\therefore \angle EGF = 90^{\circ}.\because CD = 2AB = 4,\therefore AB = 2.\therefore EG =\frac{1}{2}AB = 1$,$FG =\frac{1}{2}CD = 2.\therefore EF = \sqrt{EG^{2} + FG^{2}} = \sqrt{1^{2} + 2^{2}} = \sqrt{5}$.

12.$\sqrt{5}$ 解析:$\because \angle ABC=2\angle C = 60^{\circ},\therefore \angle C = 30^{\circ}.\because BD$平分$\angle ABC,\therefore \angle ABD = \angle DBC = 30^{\circ}.\therefore \angle BDC = 120^{\circ}$. 如图,取$BD$的中点$G$,连接$EG$,$FG$.又$\because E$,$F$分别是$AD$,$BC$的中点,$\therefore EG // AB$,$EG =\frac{1}{2}AB$,$FG // CD$,$FG =\frac{1}{2}CD$.
$\therefore \angle EGD = \angle ABD = 30^{\circ}$,$\angle FGD = 180^{\circ} - \angle BDC = 60^{\circ}$.
$\therefore \angle EGF = 90^{\circ}.\because CD = 2AB = 4,\therefore AB = 2.\therefore EG =\frac{1}{2}AB = 1$,$FG =\frac{1}{2}CD = 2.\therefore EF = \sqrt{EG^{2} + FG^{2}} = \sqrt{1^{2} + 2^{2}} = \sqrt{5}$.
13. 如图,$E$是边长为$8$的正方形$ABCD$的对角线$BD$上的一个动点(不与点$B$,$D$重合),连接$AE$,以$AE$为边向左侧作正方形$AEFG$,$P$为$AD$的中点,连接$PG$,$DG$,$DG$的延长线与$BA$的延长线交于点$H$,在点$E$的运动过程中,线段$PG$长的最小值是

$2\sqrt{2}$
。答案:13.$2\sqrt{2}$ 解析:$\because$四边形$ABCD$、四边形$AEFG$均为正方形,
$\therefore \angle DAB = \angle GAE = 90^{\circ}$,$AD = AB$,$AG = AE$,$\angle ABD = 45^{\circ}$.
$\therefore \angle GAE - \angle DAE = \angle DAB - \angle DAE$,即$\angle GAD = \angle EAB$.
在$\triangle GAD$和$\triangle EAB$中,$\begin{cases} AG = AE, \\ \angle GAD = \angle EAB, \\ AD = AB, \end{cases}\therefore \triangle GAD \cong \triangle EAB.\therefore \angle PDG = \angle ABD = 45^{\circ}.\therefore$点$G$在线段$DH$上.
$\therefore$当$PG ⊥ DH$时,$PG$的长最短.$\because$正方形$ABCD$的边长为$8$,$P$为$AD$的中点,$\therefore DP = 4.\because PG ⊥ DH$,$\angle PDG = 45^{\circ}$,
$\therefore \triangle PDG$为等腰直角三角形,$\therefore$易得$PG = 2\sqrt{2}$.
$\therefore \angle DAB = \angle GAE = 90^{\circ}$,$AD = AB$,$AG = AE$,$\angle ABD = 45^{\circ}$.
$\therefore \angle GAE - \angle DAE = \angle DAB - \angle DAE$,即$\angle GAD = \angle EAB$.
在$\triangle GAD$和$\triangle EAB$中,$\begin{cases} AG = AE, \\ \angle GAD = \angle EAB, \\ AD = AB, \end{cases}\therefore \triangle GAD \cong \triangle EAB.\therefore \angle PDG = \angle ABD = 45^{\circ}.\therefore$点$G$在线段$DH$上.
$\therefore$当$PG ⊥ DH$时,$PG$的长最短.$\because$正方形$ABCD$的边长为$8$,$P$为$AD$的中点,$\therefore DP = 4.\because PG ⊥ DH$,$\angle PDG = 45^{\circ}$,
$\therefore \triangle PDG$为等腰直角三角形,$\therefore$易得$PG = 2\sqrt{2}$.
14. 如图,四边形$ABDE$是平行四边形,$C$为边$BD$的延长线上一点,连接$AC$,$CE$,$AD$,其中$AB = AC$。
(1) 求证:$\triangle BAD \cong \triangle ACE$;
(2) 若$\angle ABD = 30^{\circ}$,$\angle ADC = 45^{\circ}$,$BD = 10$,求$□ ABDE$的面积。

(1) 求证:$\triangle BAD \cong \triangle ACE$;
(2) 若$\angle ABD = 30^{\circ}$,$\angle ADC = 45^{\circ}$,$BD = 10$,求$□ ABDE$的面积。
答案:
14.(1)$\because$四边形$ABDE$是平行四边形,$\therefore BD // AE$,$BD = AE$.
$\therefore \angle ACB = \angle CAE.\because AB = AC$,$\therefore \angle ABD = \angle ACB$.
$\therefore \angle ABD = \angle CAE$.在$\triangle BAD$和$\triangle ACE$中,$\begin{cases} AB = CA, \\ \angle ABD = \angle CAE, \\ BD = AE, \end{cases}$
$\therefore \triangle BAD \cong \triangle ACE$ (2) 如图,过点$A$作$AG ⊥ BC$,垂足为$G$.
设$AG = x(x > 0)$.在$Rt\triangle AGD$中,$\because \angle ADC = 45^{\circ},\therefore \angle DAG = 45^{\circ} = \angle ADC.\therefore DG = AG = x$.在$Rt\triangle AGB$中,$\because \angle ABD = 30^{\circ},\therefore$易得$BG = \sqrt{3}x$.又$\because BG - DG = BD$,$BD = 10$,
$\therefore \sqrt{3}x - x = 10$,解得$x = 5\sqrt{3} + 5.\therefore AG = 5\sqrt{3} + 5.\therefore S_{□ ABDE} = BD · AG = 10 × (5\sqrt{3} + 5) = 50\sqrt{3} + 50$

14.(1)$\because$四边形$ABDE$是平行四边形,$\therefore BD // AE$,$BD = AE$.
$\therefore \angle ACB = \angle CAE.\because AB = AC$,$\therefore \angle ABD = \angle ACB$.
$\therefore \angle ABD = \angle CAE$.在$\triangle BAD$和$\triangle ACE$中,$\begin{cases} AB = CA, \\ \angle ABD = \angle CAE, \\ BD = AE, \end{cases}$
$\therefore \triangle BAD \cong \triangle ACE$ (2) 如图,过点$A$作$AG ⊥ BC$,垂足为$G$.
设$AG = x(x > 0)$.在$Rt\triangle AGD$中,$\because \angle ADC = 45^{\circ},\therefore \angle DAG = 45^{\circ} = \angle ADC.\therefore DG = AG = x$.在$Rt\triangle AGB$中,$\because \angle ABD = 30^{\circ},\therefore$易得$BG = \sqrt{3}x$.又$\because BG - DG = BD$,$BD = 10$,
$\therefore \sqrt{3}x - x = 10$,解得$x = 5\sqrt{3} + 5.\therefore AG = 5\sqrt{3} + 5.\therefore S_{□ ABDE} = BD · AG = 10 × (5\sqrt{3} + 5) = 50\sqrt{3} + 50$
15. (2024·雅安)如图,$O$是$□ ABCD$对角线的交点,过点$O$的直线分别交$AD$,$BC$于点$E$,$F$。
(1) 求证:$\triangle ODE \cong \triangle OBF$;
(2) 连接$BE$,$DF$,当$EF ⊥ BD$时,$DE = 15$,求此时四边形$BEDF$的周长。

(1) 求证:$\triangle ODE \cong \triangle OBF$;
(2) 连接$BE$,$DF$,当$EF ⊥ BD$时,$DE = 15$,求此时四边形$BEDF$的周长。
答案:15.(1)$\because$四边形$ABCD$是平行四边形,$\therefore AD // CB$.
$\therefore \angle OED = \angle OFB.\because O$是$□ ABCD$对角线的交点,$\therefore OD = OB$.在$\triangle ODE$和$\triangle OBF$中,$\begin{cases} \angle OED = \angle OFB, \\ \angle DOE = \angle BOF, \\ OD = OB, \end{cases} \therefore \triangle ODE \cong \triangle OBF$ (2) 由(1),得$\triangle ODE \cong \triangle OBF$,$\therefore DE = BF.\because DE // BF$,$\therefore$四边形$BEDF$是平行四边形.$\because EF ⊥ BD$,$\therefore$四边形$BEDF$是菱形.$\therefore DF = BF = BE = DE = 15.\therefore DF + BF + BE + DE = 4 × 15 = 60$,即四边形$BEDF$的周长为$60$
$\therefore \angle OED = \angle OFB.\because O$是$□ ABCD$对角线的交点,$\therefore OD = OB$.在$\triangle ODE$和$\triangle OBF$中,$\begin{cases} \angle OED = \angle OFB, \\ \angle DOE = \angle BOF, \\ OD = OB, \end{cases} \therefore \triangle ODE \cong \triangle OBF$ (2) 由(1),得$\triangle ODE \cong \triangle OBF$,$\therefore DE = BF.\because DE // BF$,$\therefore$四边形$BEDF$是平行四边形.$\because EF ⊥ BD$,$\therefore$四边形$BEDF$是菱形.$\therefore DF = BF = BE = DE = 15.\therefore DF + BF + BE + DE = 4 × 15 = 60$,即四边形$BEDF$的周长为$60$