1. 对下列分式约分,正确的是(
A.$\frac{a^{6}}{a^{4}} = a$
B.$\frac{x + y}{x - y} = -1$
C.$\frac{2ab^{5}}{6a^{2}b^{3}} = \frac{1}{3}$
D.$\frac{m + n}{m^{2} + mn} = \frac{1}{m}$
D
)A.$\frac{a^{6}}{a^{4}} = a$
B.$\frac{x + y}{x - y} = -1$
C.$\frac{2ab^{5}}{6a^{2}b^{3}} = \frac{1}{3}$
D.$\frac{m + n}{m^{2} + mn} = \frac{1}{m}$
答案:1. D 解析:A. $\frac{a^{6}}{a^{4}} = a^{2}$,原式约分错误;B. 分式无法约分;C. $\frac{2ab^{5}}{6a^{2}b^{3}} = \frac{b^{2}}{3a}$,原式约分错误;D. $\frac{m + n}{m^{2} + mn} = \frac{m + n}{m(m + n)} = \frac{1}{m}$,原式约分正确. 故选 D.
2. (2025·南通期末)下列各式是最简分式的是(
A.$\frac{4y + 2x}{4x}$
B.$\frac{y - x}{x - y}$
C.$\frac{x^{2} + 1}{x - 1}$
D.$\frac{x^{2} - 1}{x + 1}$
C
)A.$\frac{4y + 2x}{4x}$
B.$\frac{y - x}{x - y}$
C.$\frac{x^{2} + 1}{x - 1}$
D.$\frac{x^{2} - 1}{x + 1}$
答案:2. C 解析:A. $\frac{4y + 2x}{4x} = \frac{2y + x}{2x}$,不是最简分式;B. $\frac{y - x}{x - y} = \frac{-(x - y)}{x - y} = -1$,不是最简分式;C. $\frac{x^{2} + 1}{x}$是最简分式;D. $\frac{x^{2} - 1}{x + 1} = \frac{(x + 1)(x - 1)}{x + 1} = x - 1$,不是最简分式. 故选 C.
3. (孝感中考改编)已知 $x = \sqrt{5} - 1$,$y = \sqrt{5} + 1$,那么代数式 $\frac{x^{3} - xy^{2}}{x^{2} + xy}$ 的值是(
A.4
B.$\sqrt{5}$
C.-2
D.$-\sqrt{5}$
C
)A.4
B.$\sqrt{5}$
C.-2
D.$-\sqrt{5}$
答案:3. C 解析:$\frac{x^{3} - xy^{2}}{x^{2} + xy} = \frac{x(x + y)(x - y)}{x(x + y)} = x - y$,则当 $x = \sqrt{5} - 1$,$y = \sqrt{5} + 1$ 时,原式 $= -2$. 故选 C.
4. 化简:
(1)(2025·湖南中考)$\frac{x^{3}y}{xy} =$
(2)(湖州中考)$\frac{x + 1}{x^{2} + 2x + 1} =$
(3)(无锡中考)$\frac{2 - 18x^{2}}{1 + 3x} =$
(4)(宜昌中考)$\frac{(x + y)^{2} - (x - y)^{2}}{4xy} =$
(1)(2025·湖南中考)$\frac{x^{3}y}{xy} =$
$x^{2}$
;(2)(湖州中考)$\frac{x + 1}{x^{2} + 2x + 1} =$
$\frac{1}{x + 1}$
;(3)(无锡中考)$\frac{2 - 18x^{2}}{1 + 3x} =$
$2 - 6x$
;(4)(宜昌中考)$\frac{(x + y)^{2} - (x - y)^{2}}{4xy} =$
1
.答案:4. (1) $x^{2}$ 解析:原式 $= \frac{x^{2} · xy}{xy} = x^{2}$.
(2) $\frac{1}{x + 1}$ 解析:原式 $= \frac{x + 1}{(x + 1)^{2}} = \frac{1}{x + 1}$.
(3) $2 - 6x$ 解析:原式 $= \frac{2(1 + 3x)(1 - 3x)}{1 + 3x} = 2(1 - 3x) = 2 - 6x$.
(4) 1 解析:原式 $= \frac{x^{2} + y^{2} + 2xy - x^{2} - y^{2} + 2xy}{4xy} = 1$.
(2) $\frac{1}{x + 1}$ 解析:原式 $= \frac{x + 1}{(x + 1)^{2}} = \frac{1}{x + 1}$.
(3) $2 - 6x$ 解析:原式 $= \frac{2(1 + 3x)(1 - 3x)}{1 + 3x} = 2(1 - 3x) = 2 - 6x$.
(4) 1 解析:原式 $= \frac{x^{2} + y^{2} + 2xy - x^{2} - y^{2} + 2xy}{4xy} = 1$.
5. (2025·上饶期中)若 $b = 4a$,则 $\frac{b - 3a}{a + 5b} =$
$\frac{1}{21}$
.答案:5. $\frac{1}{21}$ 解析:当 $b = 4a$ 时,原式 $= \frac{4a - 3a}{a + 20a} = \frac{1}{21}$.
解析:
当$b = 4a$时,原式$=\frac{4a - 3a}{a + 5×4a}=\frac{a}{a + 20a}=\frac{a}{21a}=\frac{1}{21}$。
6. 教材变式 约分:
(1)$\frac{ab^{2}}{(2ab)^{2}}$;
(2)$\frac{a^{2} - 2a}{2 - a}$;
(3)$\frac{(y - x)^{2}}{(x - y)^{3}}$;
(4)$\frac{x^{n} + 3y^{n}}{x^{2n} - 9y^{2n}}$;
(5)$\frac{4y^{2} - x^{2}}{-x^{2} + 4xy - 4y^{2}}$;
(6)$\frac{(1 - x)^{2}(1 + x)^{2}}{(x^{2} - 1)^{2}}$.
(1)$\frac{ab^{2}}{(2ab)^{2}}$;
(2)$\frac{a^{2} - 2a}{2 - a}$;
(3)$\frac{(y - x)^{2}}{(x - y)^{3}}$;
(4)$\frac{x^{n} + 3y^{n}}{x^{2n} - 9y^{2n}}$;
(5)$\frac{4y^{2} - x^{2}}{-x^{2} + 4xy - 4y^{2}}$;
(6)$\frac{(1 - x)^{2}(1 + x)^{2}}{(x^{2} - 1)^{2}}$.
答案:6. (1) $\frac{ab^{2}}{(2ab)^{2}} = \frac{ab^{2}}{4a^{2}b^{2}} = \frac{1}{4a}$.
(2) $\frac{a^{2} - 2a}{2 - a} = \frac{-a(2 - a)}{2 - a} = -a$.
(3) $\frac{(y - x)^{2}}{(x - y)^{3}} = \frac{(x - y)^{2}}{(x - y)^{3}} = \frac{1}{x - y}$.
技法点拨 偶次方项内部可整体增添正负号而不影响大小,如 $a^{2} = (-a)^{2}$,$(a - b)^{2} = (b - a)^{2}$.
(4) $\frac{x^{n} + 3y^{n}}{x^{2n} - 9y^{2n}} = \frac{x^{n} + 3y^{n}}{(x^{n} + 3y^{n})(x^{n} - 3y^{n})} = \frac{1}{x^{n} - 3y^{n}}$.
(5) $\frac{4y^{2} - x^{2}}{-x^{2} + 4xy - 4y^{2}} = \frac{(2y + x)(2y - x)}{-(x - 2y)^{2}} = \frac{2y + x}{x - 2y}$.
(6) $\frac{(1 - x)^{2}(1 + x)^{2}}{(x^{2} - 1)^{2}} = \frac{(1 - x)(1 + x)(1 - x)(1 + x)}{(1 - x^{2})^{2}} = \frac{(1 - x^{2})^{2}}{(1 - x^{2})^{2}} = 1$.
(2) $\frac{a^{2} - 2a}{2 - a} = \frac{-a(2 - a)}{2 - a} = -a$.
(3) $\frac{(y - x)^{2}}{(x - y)^{3}} = \frac{(x - y)^{2}}{(x - y)^{3}} = \frac{1}{x - y}$.
技法点拨 偶次方项内部可整体增添正负号而不影响大小,如 $a^{2} = (-a)^{2}$,$(a - b)^{2} = (b - a)^{2}$.
(4) $\frac{x^{n} + 3y^{n}}{x^{2n} - 9y^{2n}} = \frac{x^{n} + 3y^{n}}{(x^{n} + 3y^{n})(x^{n} - 3y^{n})} = \frac{1}{x^{n} - 3y^{n}}$.
(5) $\frac{4y^{2} - x^{2}}{-x^{2} + 4xy - 4y^{2}} = \frac{(2y + x)(2y - x)}{-(x - 2y)^{2}} = \frac{2y + x}{x - 2y}$.
(6) $\frac{(1 - x)^{2}(1 + x)^{2}}{(x^{2} - 1)^{2}} = \frac{(1 - x)(1 + x)(1 - x)(1 + x)}{(1 - x^{2})^{2}} = \frac{(1 - x^{2})^{2}}{(1 - x^{2})^{2}} = 1$.
7. 若分式 $\frac{(x - 1)(x + 2)}{(x^{2} - A)x}$ 可以进行约分化简,则该分式中的 $A$ 不可以是(
A.1
B.$x$
C.$-x$
D.4
C
)A.1
B.$x$
C.$-x$
D.4
答案:7. C 解析:若 $A = 1$,则 $\frac{(x - 1)(x + 2)}{(x^{2} - 1)x} = \frac{(x - 1)(x + 2)}{(x + 1)(x - 1)x} = \frac{x + 2}{(x + 1)x}$,能约分,故选项 A 不符合题意;若 $A = x$,则 $\frac{(x - 1)(x + 2)}{(x^{2} - x)x} = \frac{(x - 1)(x + 2)}{(x - 1)x^{2}} = \frac{x + 2}{x^{2}}$,能约分,故选项 B 不符合题意;若 $A = -x$,则 $\frac{(x - 1)(x + 2)}{(x^{2} + x)x} = \frac{(x - 1)(x + 2)}{(x + 1)x^{2}}$,不能约分,故选项 C 符合题意;若 $A = 4$,则 $\frac{(x - 1)(x + 2)}{(x^{2} - 4)x} = \frac{(x - 1)(x + 2)}{(x + 2)(x - 2)x} = \frac{x - 1}{(x - 2)x}$,能约分,故选项 D 不符合题意. 故选 C.
8. (2025·上海期中)如图,设 $k =$ $\frac{图①中阴影部分面积}{图②中阴影部分面积}(a > b > 0)$,则有(

A.$k > 2$
B.$1 < k < 2$
C.$\frac{1}{2} < k < 1$
D.$0 < k < \frac{1}{2}$
B
)A.$k > 2$
B.$1 < k < 2$
C.$\frac{1}{2} < k < 1$
D.$0 < k < \frac{1}{2}$
答案:8. B 解析:题图①中阴影部分面积为 $a^{2} - b^{2}$,题图②中阴影部分面积为 $a(a - b)$,则 $k = \frac{a^{2} - b^{2}}{a(a - b)} = \frac{(a - b)(a + b)}{a(a - b)} = \frac{a + b}{a} = 1 + \frac{b}{a}$. $\because a > b > 0$,$\therefore 0 < \frac{b}{a} < 1$,$\therefore 1 < \frac{b}{a} + 1 < 2$,即 $1 < k < 2$. 故选 B.