6. (2025·无锡期中)如图,在正方形 $ABCD$ 中,对角线 $AC$,$BD$ 交于点 $O$,$E$ 为 $CD$ 上一点,$BF⊥ AE$,$CG⊥ BF$,垂足分别为 $F$,$G$,连接 $OG$,$OF$,$AO$ 与 $BF$ 交于点 $H$,在下列结论中:① $AF = BG$;② $△ GOF$ 是等腰三角形;③ $BG + FH = GH$;④ $HG^{2}+HF^{2}=2HO^{2}$;⑤ $GO$ 平分 $∠ FGC$。正确的个数是(

A.$2$
B.$3$
C.$4$
D.$5$
C
)A.$2$
B.$3$
C.$4$
D.$5$
答案:
6. C 解析:$\because$四边形$ABCD$是正方形,$\therefore AC⊥ BD$,$AB = BC = AD$,$OA = OB = OC = OD$,$∠ ABC = ∠ ABF + ∠ CBG = 90^{\circ}$,$∠ ABO = ∠ BCO = 45^{\circ}$,$∠ AOB = 90^{\circ}$。$\because BF⊥ AE$,$CG⊥ BF$,$\therefore ∠ AFB = ∠ BGC = 90^{\circ}$,$∠ CBG + ∠ BCG = 90^{\circ}$,$\therefore ∠ ABF = ∠ BCG$。在$△ ABF$和$△ BCG$中,$\begin{cases}∠ ABF = ∠ BCG,\\∠ AFB = ∠ BGC,\\AB = BC,\end{cases}$ $\therefore △ ABF≌△ BCG(\mathrm{AAS})$,$\therefore AF = BG$,①正确;$\because$正方形的对角线平分每组对角,$\therefore ∠ BAC = ∠ OBC = 45^{\circ}$。由$△ ABF≌△ BCG$得$∠ BAF = ∠ CBG$,$\therefore ∠ FAO = ∠ GBO$。又$\because OA = OB$,$\therefore △ FAO≌△ GBO$,$\therefore FO = GO$,$∠ FOA = ∠ GOB$。$\because ∠ AOG + ∠ GOB = 90^{\circ}$,$\therefore ∠ AOG + ∠ FOA = 90^{\circ} = ∠ FOG$,故$△ GOF$为等腰直角三角形,故②正确;$\therefore ∠ FGO = 45^{\circ}$。$\because ∠ BGC = 90^{\circ}$,$\therefore ∠ OGC = 45^{\circ} = ∠ FGO$,$\therefore GO$平分$∠ FGC$,故⑤正确;设$GC$交$BD$于点$I$,连接$HI$,如图①所示,$\because △ GOF$为等腰直角三角形,$∠ OGC = 45^{\circ} = ∠ FGO$,$\therefore ∠ HFO = ∠ IGO = 45^{\circ}$。在$△ FOH$和$△ GOI$中,$\begin{cases}∠ HFO = ∠ IGO,\\FO = GO,\\∠ FOH = ∠ GOI,\end{cases}$ $\therefore △ FOH≌△ GOI(\mathrm{ASA})$,$\therefore HO = IO$,$GI = HF$,$\therefore △ HOI$为等腰直角三角形,$\therefore HI^{2} = 2HO^{2}$,在$Rt△ HGI$中,由勾股定理可得$HG^{2} + GI^{2} = HI^{2}$,即$HG^{2} + HF^{2} = HI^{2} = 2HO^{2}$,故④正确;
如图②所示,作$GJ = GI$,$\because GI = HF$,$\therefore GJ = HF$,$\therefore BG + HF = BG + GJ = BJ$,当且仅当$BG = HJ$时,$BG + HF = GH$成立,故③不一定正确。
综上,正确的序号为①②④⑤,故选C。

6. C 解析:$\because$四边形$ABCD$是正方形,$\therefore AC⊥ BD$,$AB = BC = AD$,$OA = OB = OC = OD$,$∠ ABC = ∠ ABF + ∠ CBG = 90^{\circ}$,$∠ ABO = ∠ BCO = 45^{\circ}$,$∠ AOB = 90^{\circ}$。$\because BF⊥ AE$,$CG⊥ BF$,$\therefore ∠ AFB = ∠ BGC = 90^{\circ}$,$∠ CBG + ∠ BCG = 90^{\circ}$,$\therefore ∠ ABF = ∠ BCG$。在$△ ABF$和$△ BCG$中,$\begin{cases}∠ ABF = ∠ BCG,\\∠ AFB = ∠ BGC,\\AB = BC,\end{cases}$ $\therefore △ ABF≌△ BCG(\mathrm{AAS})$,$\therefore AF = BG$,①正确;$\because$正方形的对角线平分每组对角,$\therefore ∠ BAC = ∠ OBC = 45^{\circ}$。由$△ ABF≌△ BCG$得$∠ BAF = ∠ CBG$,$\therefore ∠ FAO = ∠ GBO$。又$\because OA = OB$,$\therefore △ FAO≌△ GBO$,$\therefore FO = GO$,$∠ FOA = ∠ GOB$。$\because ∠ AOG + ∠ GOB = 90^{\circ}$,$\therefore ∠ AOG + ∠ FOA = 90^{\circ} = ∠ FOG$,故$△ GOF$为等腰直角三角形,故②正确;$\therefore ∠ FGO = 45^{\circ}$。$\because ∠ BGC = 90^{\circ}$,$\therefore ∠ OGC = 45^{\circ} = ∠ FGO$,$\therefore GO$平分$∠ FGC$,故⑤正确;设$GC$交$BD$于点$I$,连接$HI$,如图①所示,$\because △ GOF$为等腰直角三角形,$∠ OGC = 45^{\circ} = ∠ FGO$,$\therefore ∠ HFO = ∠ IGO = 45^{\circ}$。在$△ FOH$和$△ GOI$中,$\begin{cases}∠ HFO = ∠ IGO,\\FO = GO,\\∠ FOH = ∠ GOI,\end{cases}$ $\therefore △ FOH≌△ GOI(\mathrm{ASA})$,$\therefore HO = IO$,$GI = HF$,$\therefore △ HOI$为等腰直角三角形,$\therefore HI^{2} = 2HO^{2}$,在$Rt△ HGI$中,由勾股定理可得$HG^{2} + GI^{2} = HI^{2}$,即$HG^{2} + HF^{2} = HI^{2} = 2HO^{2}$,故④正确;
如图②所示,作$GJ = GI$,$\because GI = HF$,$\therefore GJ = HF$,$\therefore BG + HF = BG + GJ = BJ$,当且仅当$BG = HJ$时,$BG + HF = GH$成立,故③不一定正确。
综上,正确的序号为①②④⑤,故选C。
7. 如图,在 $Rt△ ABC$ 中,$AC = BC$,$∠ C = 90^{\circ}$,点 $D$ 为 $AB$ 边的中点,$∠ EDF = 90^{\circ}$,将 $∠ EDF$ 绕点 $D$ 旋转,它的两边分别交 $AC$,$CB$ 所在直线于点 $E$,$F$。有以下 $4$ 个结论:① $CE = BF$;② $∠ DEC+∠ DBF = 180^{\circ}$;③ $EF^{2}=2DE^{2}$;④当点 $E$,$F$ 落在 $AC$,$CB$ 的延长线上时,$S_{△ DEF}-S_{△ CEF}=\frac{1}{2}S_{△ ABC}$。在旋转过程中,上述结论一定成立的有(

A.$1$ 个
B.$2$ 个
C.$3$ 个
D.$4$ 个
C
)A.$1$ 个
B.$2$ 个
C.$3$ 个
D.$4$ 个
答案:
7. C 解析:如图①,连接$DC$。$\because AC = BC$,$∠ ACB = 90^{\circ}$,点$D$为$AB$边的中点,$\therefore ∠ B = 45^{\circ}$,$∠ DCE = \frac{1}{2}∠ ACB = 45^{\circ}$,$CD⊥ AB$,$CD = \frac{1}{2}AB = BD$,$\therefore ∠ DCE = ∠ B$,$∠ CDB = 90^{\circ}$。$\because ∠ EDF = 90^{\circ}$,$\therefore ∠ CDE = ∠ BDF$。在$△ CDE$和$△ BDF$中,$\begin{cases}∠ CDE = ∠ BDF,\\CD = BD,\\∠ DCE = ∠ B,\end{cases}$ $\therefore △ CDE≌△ BDF(\mathrm{ASA})$,$\therefore CE = BF$,故①正确;$\because △ CDE≌△ BDF$,$\therefore ∠ BFD = ∠ DEC$,$DF = DE$,$\therefore ∠ BFD + ∠ DFC = 180^{\circ} = ∠ DEC + ∠ DFC≠∠ DEC + ∠ DBF$,故②错误;$\because ∠ EDF = 90^{\circ}$,由$△ CDE≌△ BDF$知$DE = DF$,$\therefore EF^{2} = DE^{2} + DF^{2} = 2DE^{2}$,故③正确;如图②,连接$CD$,同理可证$△ DEC≌△ DFB$,$∠ DCE = ∠ DBF = 135^{\circ}$。$\because S_{△ DEF} = S_{△ CFE} + S_{△ DBC} = S_{△ CFE} + \frac{1}{2}S_{△ ABC}$,$\therefore S_{△ DEF} - S_{△ CEF} = \frac{1}{2}S_{△ ABC}$,故④正确。故选C。

7. C 解析:如图①,连接$DC$。$\because AC = BC$,$∠ ACB = 90^{\circ}$,点$D$为$AB$边的中点,$\therefore ∠ B = 45^{\circ}$,$∠ DCE = \frac{1}{2}∠ ACB = 45^{\circ}$,$CD⊥ AB$,$CD = \frac{1}{2}AB = BD$,$\therefore ∠ DCE = ∠ B$,$∠ CDB = 90^{\circ}$。$\because ∠ EDF = 90^{\circ}$,$\therefore ∠ CDE = ∠ BDF$。在$△ CDE$和$△ BDF$中,$\begin{cases}∠ CDE = ∠ BDF,\\CD = BD,\\∠ DCE = ∠ B,\end{cases}$ $\therefore △ CDE≌△ BDF(\mathrm{ASA})$,$\therefore CE = BF$,故①正确;$\because △ CDE≌△ BDF$,$\therefore ∠ BFD = ∠ DEC$,$DF = DE$,$\therefore ∠ BFD + ∠ DFC = 180^{\circ} = ∠ DEC + ∠ DFC≠∠ DEC + ∠ DBF$,故②错误;$\because ∠ EDF = 90^{\circ}$,由$△ CDE≌△ BDF$知$DE = DF$,$\therefore EF^{2} = DE^{2} + DF^{2} = 2DE^{2}$,故③正确;如图②,连接$CD$,同理可证$△ DEC≌△ DFB$,$∠ DCE = ∠ DBF = 135^{\circ}$。$\because S_{△ DEF} = S_{△ CFE} + S_{△ DBC} = S_{△ CFE} + \frac{1}{2}S_{△ ABC}$,$\therefore S_{△ DEF} - S_{△ CEF} = \frac{1}{2}S_{△ ABC}$,故④正确。故选C。
8. (2025·常州期中)如图,点 $O$ 为矩形 $ABCD$ 的对称中心,$AB = 6\ cm$,$BC = 8\ cm$,点 $E$,$F$,$G$ 分别在边 $AB$,$BC$,$CD$ 上。点 $E$ 从点 $B$ 出发向点 $A$ 运动,速度为 $4\ cm/s$,点 $F$ 从点 $B$ 出发向点 $C$ 运动,速度为 $3\ cm/s$,点 $G$ 从点 $C$ 出发向点 $D$ 运动,速度为 $4\ cm/s$。当点 $E$ 到达点 $A$(即点 $E$ 与点 $A$ 重合)时,三个点随之停止运动。在运动过程中,$△ EBF$ 关于直线 $EF$ 的对称图形是 $△ EB'F$,设点 $E$,$F$,$G$ 运动的时间为 $t$(单位:$s$)。
(1)四边形 $EBFB'$
(2)若 $M$,$N$ 分别是 $EF$,$FG$ 的中点,连接 $BM$,$MN$,问:当 $t$ 为何值时,四边形 $BMNF$ 是平行四边形?
(3)是否存在实数 $t$,使得点 $B'$ 与点 $O$ 重合?若存在,求出 $t$ 的值;若不存在,请说明理由。

(1)四边形 $EBFB'$
不能
(填“能”或“不能”)是正方形。(2)若 $M$,$N$ 分别是 $EF$,$FG$ 的中点,连接 $BM$,$MN$,问:当 $t$ 为何值时,四边形 $BMNF$ 是平行四边形?
(3)是否存在实数 $t$,使得点 $B'$ 与点 $O$ 重合?若存在,求出 $t$ 的值;若不存在,请说明理由。
答案:
8. (1)不能 解析:由题意得$BE = 4t\ \mathrm{cm}$,$BF = 3t\ \mathrm{cm}$,$\because BE≠ BF$,$\therefore$四边形$EBFB'$不能是正方形。
(2)如图①,连接$EG$,$\because$四边形$ABCD$是矩形,$\therefore BE// CG$,$∠ ABC = ∠ C = 90^{\circ}$。$\because BE = CG = 4t\ \mathrm{cm}$,$\therefore$四边形$BCGE$是平行四边形。$\because ∠ C = 90^{\circ}$,$\therefore$平行四边形$BCGE$是矩形,$\therefore EG = BC$,$EG// BC$。$\because M$,$N$分别是$EF$,$FG$的中点,$\therefore MN = \frac{1}{2}EG = \frac{1}{2}BC$,$EG// MN// BC$,$\therefore MN// BF$,当$MN = BF$时,四边形$BMNF$是平行四边形,此时$BF = \frac{1}{2}BC$,即$3t = \frac{1}{2}×8$,解得$t = \frac{4}{3}$,故当$t = \frac{4}{3}$时,四边形$BMNF$是平行四边形。
(3)存在实数$t$,使得点$B'$与点$O$重合,如图②,连接$B'B$交$EF$于点$H$,连接$AC$,$BD$,$\because$四边形$ABCD$为矩形,$AB = 6\ \mathrm{cm}$,$BC = 8\ \mathrm{cm}$,$\therefore AC = BD = \sqrt{6^{2} + 8^{2}} = 10(\mathrm{cm})$,$\therefore BO = \frac{1}{2}BD = 5\ \mathrm{cm}$。$\because △ EBF$关于直线$EF$的对称图形是$△ EB'F$,$\therefore EF$是线段$B'B$的垂直平分线,$\therefore BH = B'H$,当点$B'$与点$O$重合时,$BH = B'H = \frac{1}{2}×5 = \frac{5}{2}(\mathrm{cm})$。在$Rt△ BEF$中,$BH⊥ EF$,$BE = 4t\ \mathrm{cm}$,$BF = 3t\ \mathrm{cm}$,$\therefore EF = \sqrt{BE^{2} + BF^{2}} = 5t\ \mathrm{cm}$。$\because BH = \frac{5}{2}\ \mathrm{cm}$,$\therefore S_{△ BEF} = \frac{1}{2}EF· BH = \frac{1}{2}BE· BF$,即$\frac{1}{2}×5t×\frac{5}{2} = \frac{1}{2}×4t×3t$,解得$t = \frac{25}{24}$。
8. (1)不能 解析:由题意得$BE = 4t\ \mathrm{cm}$,$BF = 3t\ \mathrm{cm}$,$\because BE≠ BF$,$\therefore$四边形$EBFB'$不能是正方形。
(2)如图①,连接$EG$,$\because$四边形$ABCD$是矩形,$\therefore BE// CG$,$∠ ABC = ∠ C = 90^{\circ}$。$\because BE = CG = 4t\ \mathrm{cm}$,$\therefore$四边形$BCGE$是平行四边形。$\because ∠ C = 90^{\circ}$,$\therefore$平行四边形$BCGE$是矩形,$\therefore EG = BC$,$EG// BC$。$\because M$,$N$分别是$EF$,$FG$的中点,$\therefore MN = \frac{1}{2}EG = \frac{1}{2}BC$,$EG// MN// BC$,$\therefore MN// BF$,当$MN = BF$时,四边形$BMNF$是平行四边形,此时$BF = \frac{1}{2}BC$,即$3t = \frac{1}{2}×8$,解得$t = \frac{4}{3}$,故当$t = \frac{4}{3}$时,四边形$BMNF$是平行四边形。
(3)存在实数$t$,使得点$B'$与点$O$重合,如图②,连接$B'B$交$EF$于点$H$,连接$AC$,$BD$,$\because$四边形$ABCD$为矩形,$AB = 6\ \mathrm{cm}$,$BC = 8\ \mathrm{cm}$,$\therefore AC = BD = \sqrt{6^{2} + 8^{2}} = 10(\mathrm{cm})$,$\therefore BO = \frac{1}{2}BD = 5\ \mathrm{cm}$。$\because △ EBF$关于直线$EF$的对称图形是$△ EB'F$,$\therefore EF$是线段$B'B$的垂直平分线,$\therefore BH = B'H$,当点$B'$与点$O$重合时,$BH = B'H = \frac{1}{2}×5 = \frac{5}{2}(\mathrm{cm})$。在$Rt△ BEF$中,$BH⊥ EF$,$BE = 4t\ \mathrm{cm}$,$BF = 3t\ \mathrm{cm}$,$\therefore EF = \sqrt{BE^{2} + BF^{2}} = 5t\ \mathrm{cm}$。$\because BH = \frac{5}{2}\ \mathrm{cm}$,$\therefore S_{△ BEF} = \frac{1}{2}EF· BH = \frac{1}{2}BE· BF$,即$\frac{1}{2}×5t×\frac{5}{2} = \frac{1}{2}×4t×3t$,解得$t = \frac{25}{24}$。
9. (2025·连云港期中)【创设情境】定义:有一组邻角互余的四边形叫作邻余四边形,这组邻角的夹边称为邻余线。
【概念理解】
(1)邻余四边形可能是
①中心对称图形②轴对称图形
(2)如图①,邻余四边形 $ABCD$ 中,$AB$ 是邻余线,$AB// CD$,$AB = 7$,$AD = 3$,$CD = 2$,求 $BC$ 的长。
【拓展应用】
(3)如图②,邻余四边形 $ABCD$ 中,$AB$ 是邻余线,$AD = a$,$BC = b$,其中 $a≥ b$。
①若点 $M$,$N$ 分别是 $AB$,$CD$ 的中点,以 $M$,$N$ 为顶点作正方形 $EMFN$,求正方形 $EMFN$ 的面积;(用含 $a$,$b$ 的式子表示)
②若 $CD = c$,请直接写出 $AB$ 边长度的取值范围

【概念理解】
(1)邻余四边形可能是
②
。(填序号)①中心对称图形②轴对称图形
(2)如图①,邻余四边形 $ABCD$ 中,$AB$ 是邻余线,$AB// CD$,$AB = 7$,$AD = 3$,$CD = 2$,求 $BC$ 的长。
【拓展应用】
(3)如图②,邻余四边形 $ABCD$ 中,$AB$ 是邻余线,$AD = a$,$BC = b$,其中 $a≥ b$。
①若点 $M$,$N$ 分别是 $AB$,$CD$ 的中点,以 $M$,$N$ 为顶点作正方形 $EMFN$,求正方形 $EMFN$ 的面积;(用含 $a$,$b$ 的式子表示)
②若 $CD = c$,请直接写出 $AB$ 边长度的取值范围
$\sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$
。(用含 $a$,$b$,$c$ 的式子表示)答案:
9. (1)② 解析:当邻余四边形是同一底边上是$45^{\circ}$的等腰梯形时,它是轴对称图形,因为邻余四边形的邻角互余,所以它不能是平行四边形,所以它不能是中心对称图形,故答案为②。
(2)如图①,作$DE// BC$交$AB$于$E$,$\therefore ∠ AED = ∠ B$。$\because AB$是邻余线,$\therefore ∠ A + ∠ B = 90^{\circ}$,$\therefore ∠ A + ∠ AED = 90^{\circ}$,$\therefore ∠ ADE = 90^{\circ}$。$\because AB// CD$,$\therefore$四边形$CDEB$是平行四边形,$\therefore DE = BC$,$BE = CD = 2$。$\because AB = 7$,$\therefore AE = AB - BE = 7 - 2 = 5$。$\because AD = 3$,$\therefore DE = \sqrt{AE^{2} - AD^{2}} = \sqrt{5^{2} - 3^{2}} = 4$,$\therefore BC = 4$。
(3)①如图②,作射线$AN$,并截取$NG = AN$,连接$CG$,$BG$,$MN$,设$AD$和$BC$的延长线交于$H$,$\because$点$N$是$CD$的中点,$\therefore DN = CN$。$\because ∠ AND = ∠ CNG$,$AN = NG$,$\therefore △ ADN≌△ GCN(\mathrm{SAS})$,$\therefore CG = AD = a$,$∠ DAN = ∠ CGN$,$\therefore AD// CG$,$\therefore ∠ HCG = ∠ AHC$。$\because M$是$AB$的中点,$NG = AN$,$\therefore MN = \frac{1}{2}BG$。$\because AB$是邻余线,$\therefore ∠ DAB + ∠ CBA = 90^{\circ}$,$\therefore ∠ AHC = 90^{\circ}$,$\therefore ∠ HCG = 90^{\circ}$,$\therefore ∠ BCG = 90^{\circ}$。$\because AD = a = CG$,$BC = b$,$\therefore BG = \sqrt{CG^{2} + BC^{2}} = \sqrt{a^{2} + b^{2}}$,$\therefore MN = \frac{\sqrt{a^{2} + b^{2}}}{2}$,$\therefore S_{\mathrm{正方形}EMFN} = \frac{1}{2}EF· MN = \frac{1}{2}MN^{2} = \frac{a^{2} + b^{2}}{8}$。
②$\sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$ 解析:如图②,连接$HN$,$HM$,由①知$∠ AHC = 90^{\circ}$,$MN = \frac{\sqrt{a^{2} + b^{2}}}{2}$,$\because$点$N$是$CD$的中点,$M$是$AB$的中点,$\therefore HN = \frac{1}{2}CD = \frac{1}{2}c$,$HM = \frac{1}{2}AB$。$\because$邻余四边形$ABCD$中,$AB$是邻余线,$\therefore$点$H$在$CD$上方,$\therefore MN < HM≤ MN + HN$,$\therefore \frac{\sqrt{a^{2} + b^{2}}}{2} < HM≤\frac{\sqrt{a^{2} + b^{2}}}{2} + \frac{1}{2}c$,$\therefore \sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$。
9. (1)② 解析:当邻余四边形是同一底边上是$45^{\circ}$的等腰梯形时,它是轴对称图形,因为邻余四边形的邻角互余,所以它不能是平行四边形,所以它不能是中心对称图形,故答案为②。
(2)如图①,作$DE// BC$交$AB$于$E$,$\therefore ∠ AED = ∠ B$。$\because AB$是邻余线,$\therefore ∠ A + ∠ B = 90^{\circ}$,$\therefore ∠ A + ∠ AED = 90^{\circ}$,$\therefore ∠ ADE = 90^{\circ}$。$\because AB// CD$,$\therefore$四边形$CDEB$是平行四边形,$\therefore DE = BC$,$BE = CD = 2$。$\because AB = 7$,$\therefore AE = AB - BE = 7 - 2 = 5$。$\because AD = 3$,$\therefore DE = \sqrt{AE^{2} - AD^{2}} = \sqrt{5^{2} - 3^{2}} = 4$,$\therefore BC = 4$。
(3)①如图②,作射线$AN$,并截取$NG = AN$,连接$CG$,$BG$,$MN$,设$AD$和$BC$的延长线交于$H$,$\because$点$N$是$CD$的中点,$\therefore DN = CN$。$\because ∠ AND = ∠ CNG$,$AN = NG$,$\therefore △ ADN≌△ GCN(\mathrm{SAS})$,$\therefore CG = AD = a$,$∠ DAN = ∠ CGN$,$\therefore AD// CG$,$\therefore ∠ HCG = ∠ AHC$。$\because M$是$AB$的中点,$NG = AN$,$\therefore MN = \frac{1}{2}BG$。$\because AB$是邻余线,$\therefore ∠ DAB + ∠ CBA = 90^{\circ}$,$\therefore ∠ AHC = 90^{\circ}$,$\therefore ∠ HCG = 90^{\circ}$,$\therefore ∠ BCG = 90^{\circ}$。$\because AD = a = CG$,$BC = b$,$\therefore BG = \sqrt{CG^{2} + BC^{2}} = \sqrt{a^{2} + b^{2}}$,$\therefore MN = \frac{\sqrt{a^{2} + b^{2}}}{2}$,$\therefore S_{\mathrm{正方形}EMFN} = \frac{1}{2}EF· MN = \frac{1}{2}MN^{2} = \frac{a^{2} + b^{2}}{8}$。
②$\sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$ 解析:如图②,连接$HN$,$HM$,由①知$∠ AHC = 90^{\circ}$,$MN = \frac{\sqrt{a^{2} + b^{2}}}{2}$,$\because$点$N$是$CD$的中点,$M$是$AB$的中点,$\therefore HN = \frac{1}{2}CD = \frac{1}{2}c$,$HM = \frac{1}{2}AB$。$\because$邻余四边形$ABCD$中,$AB$是邻余线,$\therefore$点$H$在$CD$上方,$\therefore MN < HM≤ MN + HN$,$\therefore \frac{\sqrt{a^{2} + b^{2}}}{2} < HM≤\frac{\sqrt{a^{2} + b^{2}}}{2} + \frac{1}{2}c$,$\therefore \sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$。