1. 已知$\sqrt{(2 - 3|x|)^2} = 2 + 3x$,则$x$的取值范围是(
A.$-\dfrac{2}{3}\leqslant x\leqslant\dfrac{2}{3}$
B.$-\dfrac{2}{3}\leqslant x\leqslant0$
C.$0\leqslant x\leqslant\dfrac{2}{3}$
D.$x\leqslant\dfrac{2}{3}$或$x\geqslant\dfrac{2}{3}$
B
)A.$-\dfrac{2}{3}\leqslant x\leqslant\dfrac{2}{3}$
B.$-\dfrac{2}{3}\leqslant x\leqslant0$
C.$0\leqslant x\leqslant\dfrac{2}{3}$
D.$x\leqslant\dfrac{2}{3}$或$x\geqslant\dfrac{2}{3}$
答案:1. B
解析:
$\sqrt{(2 - 3|x|)^2} = |2 - 3|x||$,则$|2 - 3|x|| = 2 + 3x$。
因为等式右边$2 + 3x \geq 0$,所以$3x \geq -2$,即$x \geq -\dfrac{2}{3}$。
当$x \geq 0$时,$|x| = x$,原方程化为$|2 - 3x| = 2 + 3x$。
若$2 - 3x \geq 0$,即$x \leq \dfrac{2}{3}$,则$2 - 3x = 2 + 3x$,解得$x = 0$;
若$2 - 3x < 0$,即$x > \dfrac{2}{3}$,则$3x - 2 = 2 + 3x$,$-2 = 2$,无解。
当$x < 0$时,$|x| = -x$,原方程化为$|2 + 3x| = 2 + 3x$,所以$2 + 3x \geq 0$,即$x \geq -\dfrac{2}{3}$,故$-\dfrac{2}{3} \leq x < 0$。
综上,$x$的取值范围是$-\dfrac{2}{3} \leq x \leq 0$。
B
因为等式右边$2 + 3x \geq 0$,所以$3x \geq -2$,即$x \geq -\dfrac{2}{3}$。
当$x \geq 0$时,$|x| = x$,原方程化为$|2 - 3x| = 2 + 3x$。
若$2 - 3x \geq 0$,即$x \leq \dfrac{2}{3}$,则$2 - 3x = 2 + 3x$,解得$x = 0$;
若$2 - 3x < 0$,即$x > \dfrac{2}{3}$,则$3x - 2 = 2 + 3x$,$-2 = 2$,无解。
当$x < 0$时,$|x| = -x$,原方程化为$|2 + 3x| = 2 + 3x$,所以$2 + 3x \geq 0$,即$x \geq -\dfrac{2}{3}$,故$-\dfrac{2}{3} \leq x < 0$。
综上,$x$的取值范围是$-\dfrac{2}{3} \leq x \leq 0$。
B
2. 若$\sqrt{x} + \sqrt{\dfrac{1}{x}} = \sqrt{5}$,则$\sqrt{\dfrac{x}{x^2 + x + 1}} - \sqrt{\dfrac{x}{x^2 - x + 1}}$的值为(
A.$\dfrac{1 - \sqrt{2}}{2}$
B.$\dfrac{\sqrt{2} - 1}{2}$
C.$2 + 2\sqrt{2}$
D.$-2 - 2\sqrt{2}$
A
)A.$\dfrac{1 - \sqrt{2}}{2}$
B.$\dfrac{\sqrt{2} - 1}{2}$
C.$2 + 2\sqrt{2}$
D.$-2 - 2\sqrt{2}$
答案:2. A
解析:
设$\sqrt{x} = t$($t > 0$),则$\sqrt{\dfrac{1}{x}} = \dfrac{1}{t}$,已知$t + \dfrac{1}{t} = \sqrt{5}$。
两边平方得:$t^2 + 2 + \dfrac{1}{t^2} = 5$,即$t^2 + \dfrac{1}{t^2} = 3$。
$\sqrt{\dfrac{x}{x^2 + x + 1}} = \sqrt{\dfrac{1}{x + 1 + \dfrac{1}{x}}} = \sqrt{\dfrac{1}{t^2 + \dfrac{1}{t^2} + 1}} = \sqrt{\dfrac{1}{3 + 1}} = \dfrac{1}{2}$。
$\sqrt{\dfrac{x}{x^2 - x + 1}} = \sqrt{\dfrac{1}{x - 1 + \dfrac{1}{x}}} = \sqrt{\dfrac{1}{t^2 + \dfrac{1}{t^2} - 1}} = \sqrt{\dfrac{1}{3 - 1}} = \dfrac{\sqrt{2}}{2}$。
则原式$= \dfrac{1}{2} - \dfrac{\sqrt{2}}{2} = \dfrac{1 - \sqrt{2}}{2}$。
A
两边平方得:$t^2 + 2 + \dfrac{1}{t^2} = 5$,即$t^2 + \dfrac{1}{t^2} = 3$。
$\sqrt{\dfrac{x}{x^2 + x + 1}} = \sqrt{\dfrac{1}{x + 1 + \dfrac{1}{x}}} = \sqrt{\dfrac{1}{t^2 + \dfrac{1}{t^2} + 1}} = \sqrt{\dfrac{1}{3 + 1}} = \dfrac{1}{2}$。
$\sqrt{\dfrac{x}{x^2 - x + 1}} = \sqrt{\dfrac{1}{x - 1 + \dfrac{1}{x}}} = \sqrt{\dfrac{1}{t^2 + \dfrac{1}{t^2} - 1}} = \sqrt{\dfrac{1}{3 - 1}} = \dfrac{\sqrt{2}}{2}$。
则原式$= \dfrac{1}{2} - \dfrac{\sqrt{2}}{2} = \dfrac{1 - \sqrt{2}}{2}$。
A
3. 已知$a = \dfrac{1}{2}\sqrt{2 + \dfrac{1}{8}} - \dfrac{1}{8}\sqrt{2}$,则$a^2 + \sqrt{a^4 + a + 1}$的值为(
A.$\sqrt{2}$
B.$2\sqrt{2}$
C.$4$
D.$\dfrac{\sqrt{2}}{2}$
A
)A.$\sqrt{2}$
B.$2\sqrt{2}$
C.$4$
D.$\dfrac{\sqrt{2}}{2}$
答案:3. A 解析:因为$a = \frac {1}{2}\sqrt {2} + \frac {1}{8} - \frac {1}{8}\sqrt {2}$,所以$a + \frac {1}{8}\sqrt {2} = \frac {1}{2}\sqrt {2} + \frac {1}{8}$. 两边平方并化简,得$2\sqrt {2}a^{2} + a = 1$. 所以$a^{2} = \frac {\sqrt {2} - \sqrt {2}a}{4}$,即$a^{4} = \frac {a^{2} - 2a + 1}{8}$. 又$( \frac {1}{2}\sqrt {2} + \frac {1}{8} )^{2} - ( \frac {1}{8}\sqrt {2} )^{2} = \frac {\sqrt {2}}{4} > 0$,所以$a > 0$. 所以$a^{2} + \sqrt {a^{4} + a + 1} = a^{2} + \sqrt {\frac {a^{2} - 2a + 1}{8} + a + 1} = a^{2} + \sqrt {\frac {a^{2} + 6a + 9}{8}} = a^{2} + \frac {a + 3}{2\sqrt {2}} = \frac {2\sqrt {2}a^{2} + a + 3}{2\sqrt {2}} = \frac {1 + 3}{2\sqrt {2}} = \sqrt {2}$.
4. 已知某直角三角形的周长为$4 + 2\sqrt{6}$,斜边的中线长为$2$,则它的面积是
2
。答案:4. 2 解析:设该直角三角形两直角边及斜边的长分别为$a,b,c$,则$a + b + c = 4 + 2\sqrt {6}$,$c = 2 × 2 = 4$. 所以$a + b = 2\sqrt {6}$,$a^{2} + b^{2} = c^{2} = 16$. 因为$(a + b)^{2} = a^{2} + 2ab + b^{2}$,所以$ab = \frac {(a + b)^{2} - a^{2} - b^{2}}{2} = 4$. 所以该直角三角形的面积为$\frac {1}{2}ab = 2$.
解析:
设该直角三角形两直角边及斜边的长分别为$a$,$b$,$c$。
因为直角三角形斜边的中线长为$2$,所以斜边$c = 2×2 = 4$。
已知周长为$4 + 2\sqrt{6}$,则$a + b + c = 4 + 2\sqrt{6}$,可得$a + b = 2\sqrt{6}$。
由勾股定理得$a^2 + b^2 = c^2 = 16$。
因为$(a + b)^2 = a^2 + 2ab + b^2$,所以$(2\sqrt{6})^2 = 16 + 2ab$,即$24 = 16 + 2ab$,解得$ab = 4$。
该直角三角形的面积为$\frac{1}{2}ab = \frac{1}{2}×4 = 2$。
2
因为直角三角形斜边的中线长为$2$,所以斜边$c = 2×2 = 4$。
已知周长为$4 + 2\sqrt{6}$,则$a + b + c = 4 + 2\sqrt{6}$,可得$a + b = 2\sqrt{6}$。
由勾股定理得$a^2 + b^2 = c^2 = 16$。
因为$(a + b)^2 = a^2 + 2ab + b^2$,所以$(2\sqrt{6})^2 = 16 + 2ab$,即$24 = 16 + 2ab$,解得$ab = 4$。
该直角三角形的面积为$\frac{1}{2}ab = \frac{1}{2}×4 = 2$。
2
5. 定义新运算:$\sum_{i = 1}^{n}f(i) = f(1) + f(2) + ··· + f(n)$,则$(\sqrt{3m + 2} + \dfrac{2}{\sqrt{2}}) · \sum_{i = 1}^{m}\dfrac{1}{\sqrt{3i + 2} + \sqrt{3i - 1}}$的值为
m
。(用含$m$的代数式表示)答案:5. $m$ 解析:由题意,得$( \sqrt {3m + 2} + \frac {2}{\sqrt {2}} ) · \sum _i = 1^{m} \frac {1}{\sqrt {3i + 2} + \sqrt {3i - 1}} = (\sqrt {3m + 2} + \sqrt {2}) · ( \frac {1}{\sqrt {5} + \sqrt {2}} + \frac {1}{\sqrt {8} + \sqrt {5}} + ··· + \frac {1}{\sqrt {3m + 2} + \sqrt {3m - 1}} ) = (\sqrt {3m + 2} + \sqrt {2}) · ( \frac {\sqrt {5} - \sqrt {2}}{3} + \frac {\sqrt {8} - \sqrt {5}}{3} + ··· + \frac {\sqrt {3m + 2} - \sqrt {3m - 1}}{3} ) = (\sqrt {3m + 2} + \sqrt {2}) · \frac {\sqrt {3m + 2} - \sqrt {2}}{3} = m$.
6. 已知$x = \sqrt{50 + \sqrt{14a}} + \sqrt{50 - \sqrt{14a}}$,其中$a$为正整数,则所有使得$x$为整数的$a$的值之和为
158
。答案:6. 158 解析:由题意,得$x > 0$,$50 - \sqrt {14a} > 0$,所以$a \leq 178$. 因为$x = \sqrt {50 + \sqrt {14a}} + \sqrt {50 - \sqrt {14a}}$,所以$x^{2} = 100 + 2\sqrt {2500 - 14a}$. 所以$100 < x^{2} < 100 + 2\sqrt {2500}$,即$100 < x^{2} < 200$. 因为$10^{2} = 100$,$14^{2} = 196$,$15^{2} = 225$,所以$11 \leq x \leq 14$. 当$x = 11$时,$x^{2} = 121$,所以$121 = 100 + 2\sqrt {2500 - 14a}$,即$\sqrt {2500 - 14a} = \frac {21}{2}$,显然$a$不是正整数;当$x = 12$时,$x^{2} = 144$,所以$144 = 100 + 2\sqrt {2500 - 14a}$,即$\sqrt {2500 - 14a} = 22$,解得$a = 144$;当$x = 13$时,$x^{2} = 169$,所以$169 = 100 + 2\sqrt {2500 - 14a}$,即$\sqrt {2500 - 14a} = \frac {69}{2}$,显然$a$不是正整数;当$x = 14$时,$x^{2} = 196$,所以$196 = 100 + 2\sqrt {2500 - 14a}$,即$\sqrt {2500 - 14a} = 48$,解得$a = 14$. 综上,$a = 14$或$144$. 则所有使得$x$为整数的$a$的值之和为$14 + 144 = 158$.
7. (1)已知正整数$n$满足不等式$\dfrac{7}{8} < \dfrac{1}{\sqrt{2} + 2} + \dfrac{1}{2\sqrt{3} + 3\sqrt{2}} + \dfrac{1}{3\sqrt{4} + 4\sqrt{3}} + ··· + \dfrac{1}{n\sqrt{n + 1} + (n + 1)\sqrt{n}} < \dfrac{8}{9}$,求$n$的最大值与最小值之差;
(2)已知$\sqrt{x} = \sqrt{a} + \dfrac{1}{\sqrt{a}}(0 < a < 1)$,求代数式$\dfrac{x^2 + x - 6}{x} ÷ \dfrac{x + 3}{x^2 - 2x} - \dfrac{x - 2 + \sqrt{x^2 - 4x}}{x - 2 - \sqrt{x^2 - 4x}}$的值(用含$a$的代数式表示)。
(2)已知$\sqrt{x} = \sqrt{a} + \dfrac{1}{\sqrt{a}}(0 < a < 1)$,求代数式$\dfrac{x^2 + x - 6}{x} ÷ \dfrac{x + 3}{x^2 - 2x} - \dfrac{x - 2 + \sqrt{x^2 - 4x}}{x - 2 - \sqrt{x^2 - 4x}}$的值(用含$a$的代数式表示)。
答案:7. (1) 因为$\frac {1}{n\sqrt {n + 1} + (n + 1)\sqrt {n}} = \frac {\sqrt {n + 1} - \sqrt {n}}{[ n\sqrt {n + 1} + (n + 1)\sqrt {n} ] ( \sqrt {n + 1} - \sqrt {n} )} = \frac {\sqrt {n + 1} - \sqrt {n}}{\sqrt {n(n + 1)}}$,所以$\frac {1}{\sqrt {n}} \frac {1}{\sqrt {n + 1}} = \frac {\sqrt {n + 1} - \sqrt {n}}{\sqrt {n(n + 1)}}$,$\frac {1}{n\sqrt {n + 1} + (n + 1)\sqrt {n}} = \frac {1}{\sqrt {n}} - \frac {1}{\sqrt {n + 1}}$. 则原不等式可化为$\frac {7}{8} < 1 - \frac {1}{\sqrt {n + 1}} < \frac {8}{9}$,解得$63 < n < 80$. 又$n$为正整数,所以$n$的最小值为$64$,$n$的最大值为$79$,即$n$的最大值与最小值之差为$79 - 64 = 15$.
(2) 因为$\sqrt {x} = \sqrt {a} + \frac {1}{\sqrt {a}}$,所以$x = a + \frac {1}{a} + 2$. 所以$x - 2 = a + \frac {1}{a}$,即$(x - 2)^{2} = ( a + \frac {1}{a} )^{2}$. 所以$x^{2} - 4x = a^{2} + \frac {1}{a^{2}} - 2 = ( a - \frac {1}{a} )^{2}$. 所以原式$= \frac {(x + 3)(x - 2)}{x} · \frac {x(x - 2)}{x + 3} - \frac {x - 2 + \sqrt {x^{2} - 4x}}{x - 2 - \sqrt {x^{2} - 4x}} = ( a + \frac {1}{a} ) · \frac {\sqrt {3m + 2} - \sqrt {3m - 1}}{3} = \frac {a + \frac {1}{a} + \sqrt {( a - \frac {1}{a} )^{2}}}{a + \frac {1}{a} - \sqrt {( a - \frac {1}{a} )^{2}}}$. 又$0 < a < 1$,所以$a - \frac {1}{a} a + \frac {1}{a} - a \frac {1}{a} = \frac {a^{2} + \frac {1}{a^{2}} + 2 - \frac {1}{a^{2}}}{a^{2} + 2 - \frac {1}{a^{2}}} = a^{2} + 2$.
(2) 因为$\sqrt {x} = \sqrt {a} + \frac {1}{\sqrt {a}}$,所以$x = a + \frac {1}{a} + 2$. 所以$x - 2 = a + \frac {1}{a}$,即$(x - 2)^{2} = ( a + \frac {1}{a} )^{2}$. 所以$x^{2} - 4x = a^{2} + \frac {1}{a^{2}} - 2 = ( a - \frac {1}{a} )^{2}$. 所以原式$= \frac {(x + 3)(x - 2)}{x} · \frac {x(x - 2)}{x + 3} - \frac {x - 2 + \sqrt {x^{2} - 4x}}{x - 2 - \sqrt {x^{2} - 4x}} = ( a + \frac {1}{a} ) · \frac {\sqrt {3m + 2} - \sqrt {3m - 1}}{3} = \frac {a + \frac {1}{a} + \sqrt {( a - \frac {1}{a} )^{2}}}{a + \frac {1}{a} - \sqrt {( a - \frac {1}{a} )^{2}}}$. 又$0 < a < 1$,所以$a - \frac {1}{a} a + \frac {1}{a} - a \frac {1}{a} = \frac {a^{2} + \frac {1}{a^{2}} + 2 - \frac {1}{a^{2}}}{a^{2} + 2 - \frac {1}{a^{2}}} = a^{2} + 2$.
8. 新素养 抽象能力 已知实数$x$,$y$满足$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1$,求证:$x + y = 0$。
证法一(分母有理化):
证法二(等式两边乘有理化因式):
证法一(分母有理化):
证法二(等式两边乘有理化因式):
答案:8. 证法一:因为$(x + \sqrt {x^{2} + 1})(y + \sqrt {y^{2} + 1}) = 1$,所以$x + \sqrt {x^{2} + 1} = \frac {1}{y + \sqrt {y^{2} + 1}} = \sqrt {y^{2} + 1} - y$. 所以$(y + \sqrt {y^{2} + 1})(\sqrt {y^{2} + 1} - y) = \sqrt {y^{2} + 1} - y$,即$y + \sqrt {y^{2} + 1} = \sqrt {y^{2} + 1} - y$①,$x + \sqrt {x^{2} + 1} = \sqrt {y^{2} + 1} - y$②. 由① + ②,得$x + y + \sqrt {x^{2} + 1} + \sqrt {y^{2} + 1} = \sqrt {x^{2} + 1} + \sqrt {y^{2} + 1} - (x + y)$,即$x + y = -(x + y)$. 则$x + y = 0$.
证法二:因为$(x + \sqrt {x^{2} + 1})(y + \sqrt {y^{2} + 1}) = 1$,所以$(\sqrt {x^{2} + 1} - x)(x + \sqrt {x^{2} + 1})(y + \sqrt {y^{2} + 1}) · (\sqrt {y^{2} + 1} - y) = \sqrt {y^{2} + 1} - y$,即
证法二:因为$(x + \sqrt {x^{2} + 1})(y + \sqrt {y^{2} + 1}) = 1$,所以$(\sqrt {x^{2} + 1} - x)(x + \sqrt {x^{2} + 1})(y + \sqrt {y^{2} + 1}) · (\sqrt {y^{2} + 1} - y) = \sqrt {y^{2} + 1} - y$,即