课题:长方体和正方体的体积(2) 教学内容:教科书第18例11和“练一练”,完成练习四第4~8题。 教学目标: 1.让学生经历长方体和正方体的统一体积计算公式的推导过程,进一步认识两种几何体的基本特征及它们之间的关系。 2.使学生会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。 3.让学生知道我国古代数学家在两千多年前就掌握了长方体体积的计算方法,增强学生的民族自豪感和勇超先贤的信心和决心。 教学重点与难点: 会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。 教学准备:小黑板、课件。 教学过程: 一、以史料引入新课 1.古代数学家求长方体体积的方法. 课件展示:西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》.这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题.书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺.”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积. 2.提出探究性问题. (1)看完这段叙述,你想到什么? (2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的面积? (3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么? (4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算? 二、推导长方体和正方体统一的体积公式 1.长方体体积的另一种计算方法 让每个学生先独立思考上面4个问题,然后讨论(或同桌或小组)最后全班讨论、交流、总结出长方体体积的另一种计算方法。 (1)第(一)个问题是开放的,学生的回答会是多角度的.如,有的会从数学本身的角度出发,想到长方体的体积计算方法;有的会感受到数学是一种悠久的文化;有的会感受到数学是有的会仰慕祖先的睿智,从而激发自己努力寻探数学宝库的信心等等。 (2)弄清“底面”、“底面积”的含义。 当学生知道图中长方体的特征之一是有两个相对的面是正方形后,让他们指出图中哪一个面是底面,说说这个底面积怎样求.学生回答后,课件将这个底面涂上颜色.并标上底面积的计算方法:底面积=长×宽=边长×边长。 告诉学生,一个长方体的6个面中,任何一个面都可以做底面,不一定要以水平放置的面做底面.应根据问题中的需要来决定,哪一个面利于问题的解决,就确定那个面为底面。 (3)推出长方体体积的另一种计算方法。 提问:“你们掌握的长方体体积计算公式是什么?”学生回答后板书:长方体体积=长×宽×高 再问:“古代数学家是怎样计算长方体体积的?”学生回答后在上面计算公式的下方对着写:长方体体积=底面积×高。 引导学生对照两个公式,找出它们的异同点及之间的联系。让学生认识到古人和今人计算长方体体积的方法是一致的,两个公式可以写成如下形式: 长方体体积=长×宽×高 ↓ ↓ =底面积×高 2.推出正方体体积的另一种计算方法。 (1)课件展示学生讨论前面第(4)个探究性问题的答案:将长方体的高减少到和底面边长相等时,这个长方体就变成了一个最大的正方体。 (2)让学生说出这个正方体的底面(课件随即涂上颜色),然后推出这个正方体体积的另一种计算方法: 正方体体积=棱长×棱长×棱长 ↓ ↓ = 底面积 × 高 3.归纳出长方体和正方体统一的体积公式,并用字母表示出来。 教师指着长方体、正方体体积计算公式提问:“这两个公式能统一起来吗?”学生回答后,教师写上长方体、正方体体积计算的统一公式,并用字母表示出来。 长方体(或正方体)的体积=底面积×高 V=Sh 三、巩固应用 (一)基本练习 1.完成“练一练”第1、2题。 学生独立作业,对正时用课件显示答案.提醒学生正确书写体积单位“立方厘米”。 (二)用公式解决实际问题 1.完成“练一练”第3题。 结合示意图引导学生理解什么是“横截面”后,让学生独立完成,然后集体交流。 2.完成练习四第5题。 结合教室实物讲解占地面积的含义后学生独立完成,集体订正。 3.完成练习四第6题。 让学生独立完成解答,再交流解题时的思考过程,以及将得数保留一位小数的方法。 4.完成练习四第7题。 先启发学生思考:将黄沙铺在长方体沙坑里,黄沙的形状是什么样的?所铺黄沙的厚度指的是长方体的什么?再引导学生根据长方体体积公式,立方程解答。 4.练习六第8题 课件展示题意:一个长方形的操场──在上面铺上10厘米厚的三合土形成一个扁扁的长方体情境──再铺上4厘米厚的煤渣形成一个更薄一些的长方体的情境。 课件展示后让学生独立作业,集体订正。 四、全课总结 这节课我们学习了什么知识,你受到了那些启发? 五、布置作业: 练习六的第4题及相应的补充习题。 |
本页答案点评