26.(12分)(2023秋·句容期末)如图,一次函数$y= \frac {1}{2}x+b$的图象与坐标轴分别交于点A,B,点C是AB的中点,且点C的横坐标为-2,过点C,B分别作x轴、y轴的垂线,E,B为垂足,两线交于点D.
(1)求b的值;
(2)过点C作$CF⊥AB$,交x轴于点F,连接BF,求证:射线BA平分$∠DBF$;
(3)求EF的长.

(1)求b的值;
(2)过点C作$CF⊥AB$,交x轴于点F,连接BF,求证:射线BA平分$∠DBF$;
(3)求EF的长.

答案:
(1) 解:如答图,连接$OC$。$\because \angle AOB = 90^{\circ}$,点$C$是$AB$的中点,
$\therefore OC = AC = BC = \frac{1}{2}AB$,$\because$点$C$的横坐标为$-2$,$CE \perp x$轴于点$E$,
$\therefore E(-2,0)$,$CE$垂直平分$OA$,$\therefore AE = OE = 2$,
$\therefore OA = AE + OE = 2 + 2 = 4$,$\therefore A(-4,0)$。
$\because$直线$y = \frac{1}{2}x + b$经过点$A$,
$\therefore \frac{1}{2}×(-4) + b = 0$,解得$b = 2$。
(2) 证明:$\because AC = BC$,$CF \perp AB$,$\therefore CF$垂直平分$AB$,
$\therefore AF = BF$,$\therefore \angle ABF = \angle BAF$,
$\because BD \perp y$轴,$\therefore BD // x$轴,
$\therefore \angle ABD = \angle BAF$,
$\therefore \angle ABF = \angle ABD$,$\therefore$射线$BA$平分$\angle DBF$。
(3) 解:由(1)得$b = 2$,$OE = 2$,$OA = 4$,$\therefore y = \frac{1}{2}x + 2$,
当$x = 0$时,$y = 2$,$\therefore B(0,2)$,$\therefore OB = 2$,$\because OB^{2} + OF^{2} = BF^{2}$,且$BF = AF = 4 - OF$,$\therefore 2^{2} + OF^{2} = (4 - OF)^{2}$,解得$OF = \frac{3}{2}$,$\therefore EF = OE - OF = 2 - \frac{3}{2} = \frac{1}{2}$,
$\therefore EF$的长是$\frac{1}{2}$。

(1) 解:如答图,连接$OC$。$\because \angle AOB = 90^{\circ}$,点$C$是$AB$的中点,
$\therefore OC = AC = BC = \frac{1}{2}AB$,$\because$点$C$的横坐标为$-2$,$CE \perp x$轴于点$E$,
$\therefore E(-2,0)$,$CE$垂直平分$OA$,$\therefore AE = OE = 2$,
$\therefore OA = AE + OE = 2 + 2 = 4$,$\therefore A(-4,0)$。
$\because$直线$y = \frac{1}{2}x + b$经过点$A$,
$\therefore \frac{1}{2}×(-4) + b = 0$,解得$b = 2$。
(2) 证明:$\because AC = BC$,$CF \perp AB$,$\therefore CF$垂直平分$AB$,
$\therefore AF = BF$,$\therefore \angle ABF = \angle BAF$,
$\because BD \perp y$轴,$\therefore BD // x$轴,
$\therefore \angle ABD = \angle BAF$,
$\therefore \angle ABF = \angle ABD$,$\therefore$射线$BA$平分$\angle DBF$。
(3) 解:由(1)得$b = 2$,$OE = 2$,$OA = 4$,$\therefore y = \frac{1}{2}x + 2$,
当$x = 0$时,$y = 2$,$\therefore B(0,2)$,$\therefore OB = 2$,$\because OB^{2} + OF^{2} = BF^{2}$,且$BF = AF = 4 - OF$,$\therefore 2^{2} + OF^{2} = (4 - OF)^{2}$,解得$OF = \frac{3}{2}$,$\therefore EF = OE - OF = 2 - \frac{3}{2} = \frac{1}{2}$,
$\therefore EF$的长是$\frac{1}{2}$。
