27.(14分)如图①,直线$y= -\frac {4}{3}x+4$与x轴、y轴分别交于点A,B,以AB为直角边在第一象限内作等腰直角$\triangle ABC,∠BAC= 90^{\circ },AC= AB$.
(1)求C点坐标;
(2)如图②,点E为线段BO上的一个动点(点E不与点B,O重合),连接AE,将AE绕点A逆时针旋转$90^{\circ }$得AF,连接CF交x轴于点G,求证:G是FC的中点;
(3)如图③,将$\triangle ABC$沿着x轴向左平移得到$\triangle A'B'C'$,直线$A'B'$与y轴交于点M,当以A,B,M为顶点的三角形是等腰三角形时,请求出点$A'$的坐标.

(1)求C点坐标;
(2)如图②,点E为线段BO上的一个动点(点E不与点B,O重合),连接AE,将AE绕点A逆时针旋转$90^{\circ }$得AF,连接CF交x轴于点G,求证:G是FC的中点;
(3)如图③,将$\triangle ABC$沿着x轴向左平移得到$\triangle A'B'C'$,直线$A'B'$与y轴交于点M,当以A,B,M为顶点的三角形是等腰三角形时,请求出点$A'$的坐标.

答案:
(1) 解:如答图①,过点$C$作$CD \perp x$轴,交$x$轴于点$D$。
$\because$直线$y = -\frac{4}{3}x + 4$与$x$轴、$y$轴分别交于点$A$,$B$,
$\therefore$当$x = 0$时,$y = 4$,
当$y = 0$时,$-\frac{4}{3}x + 4 = 0$,解得$x = 3$,
$\therefore OA = 3$,$OB = 4$。
$\because \angle BAC = 90^{\circ}$,$CD \perp x$轴,
$\therefore \angle AOB = \angle CDA = 90^{\circ}$,$\angle BAO + \angle CAD = 90^{\circ}$,$\angle ABO + \angle BAO = 90^{\circ}$,
$\therefore \angle CAD = \angle ABO$。
又$\because AC = AB$,$\therefore \triangle AOB \cong \triangle CDA(AAS)$,
$\therefore CD = OA = 3$,$AD = OB = 4$,
$\therefore OD = OA + AD = 7$,$\therefore C$点坐标为$(7,3)$。
(2) 证明:如答图②,在$x$轴上截取$AH = BE$,连接$CH$,$EF$。
由(1)可得$\angle CAH = \angle ABE$,
$\because AC = AB$,$AH = BE$,
$\therefore \triangle CAH \cong \triangle ABE(SAS)$,
$\therefore CH = AE$,$\angle BEA = \angle CHA$。
$\because AE = AF$,$\angle EAF = 90^{\circ}$,
$\therefore \angle EAO + \angle FAO = 90^{\circ}$,
又$\because \angle EAO + \angle AEO = 90^{\circ}$,
$\therefore \angle AEO = \angle FAO$,$\therefore \angle AEB = \angle FAG$,
$\therefore \angle FAG = \angle CHG$。
又$\because CH = AE = AF$,$\angle CGH = \angle FGA$,
$\therefore \triangle FAG \cong \triangle CHG(AAS)$,
$\therefore CG = FG$,即$G$是$FC$的中点。
(3) 解:由平移的性质,设直线$A'B'$的函数表达式为$y = -\frac{4}{3}x + m$,
当$x = 0$时,$y = m$,当$y = 0$时,$x = \frac{3}{4}m$,
$\therefore M$点坐标为$(0,m)$,$A'$点坐标为$(\frac{3}{4}m,0)$。
由(1)知$OA = 3$,$OB = 4$,
$\therefore AB = 5$,$BM = 4 - m$,
当以$A$,$B$,$M$为顶点的三角形是等腰三角形时:
①当$AM = BM$时,$3^{2} + m^{2} = (4 - m)^{2}$,解得$m = \frac{7}{8}$,
此时点$A'$的坐标为$(\frac{21}{32},0)$;
②当$AM = AB$时,$3^{2} + m^{2} = 5^{2}$,解得$m = 4$(与点$B$重合,舍去)或$m = -4$,
此时点$A'$的坐标为$(-3,0)$;
③当$AB = BM$时,$4 - m = 5$,解得$m = -1$,
此时点$A'$的坐标为$(-\frac{3}{4},0)$。
综上,点$A'$的坐标为$(\frac{21}{32},0)$或$(-3,0)$或$(-\frac{3}{4},0)$。

(1) 解:如答图①,过点$C$作$CD \perp x$轴,交$x$轴于点$D$。
$\because$直线$y = -\frac{4}{3}x + 4$与$x$轴、$y$轴分别交于点$A$,$B$,
$\therefore$当$x = 0$时,$y = 4$,
当$y = 0$时,$-\frac{4}{3}x + 4 = 0$,解得$x = 3$,
$\therefore OA = 3$,$OB = 4$。
$\because \angle BAC = 90^{\circ}$,$CD \perp x$轴,
$\therefore \angle AOB = \angle CDA = 90^{\circ}$,$\angle BAO + \angle CAD = 90^{\circ}$,$\angle ABO + \angle BAO = 90^{\circ}$,
$\therefore \angle CAD = \angle ABO$。
又$\because AC = AB$,$\therefore \triangle AOB \cong \triangle CDA(AAS)$,
$\therefore CD = OA = 3$,$AD = OB = 4$,
$\therefore OD = OA + AD = 7$,$\therefore C$点坐标为$(7,3)$。
(2) 证明:如答图②,在$x$轴上截取$AH = BE$,连接$CH$,$EF$。
由(1)可得$\angle CAH = \angle ABE$,
$\because AC = AB$,$AH = BE$,
$\therefore \triangle CAH \cong \triangle ABE(SAS)$,
$\therefore CH = AE$,$\angle BEA = \angle CHA$。
$\because AE = AF$,$\angle EAF = 90^{\circ}$,
$\therefore \angle EAO + \angle FAO = 90^{\circ}$,
又$\because \angle EAO + \angle AEO = 90^{\circ}$,
$\therefore \angle AEO = \angle FAO$,$\therefore \angle AEB = \angle FAG$,
$\therefore \angle FAG = \angle CHG$。
又$\because CH = AE = AF$,$\angle CGH = \angle FGA$,
$\therefore \triangle FAG \cong \triangle CHG(AAS)$,
$\therefore CG = FG$,即$G$是$FC$的中点。
(3) 解:由平移的性质,设直线$A'B'$的函数表达式为$y = -\frac{4}{3}x + m$,
当$x = 0$时,$y = m$,当$y = 0$时,$x = \frac{3}{4}m$,
$\therefore M$点坐标为$(0,m)$,$A'$点坐标为$(\frac{3}{4}m,0)$。
由(1)知$OA = 3$,$OB = 4$,
$\therefore AB = 5$,$BM = 4 - m$,
当以$A$,$B$,$M$为顶点的三角形是等腰三角形时:
①当$AM = BM$时,$3^{2} + m^{2} = (4 - m)^{2}$,解得$m = \frac{7}{8}$,
此时点$A'$的坐标为$(\frac{21}{32},0)$;
②当$AM = AB$时,$3^{2} + m^{2} = 5^{2}$,解得$m = 4$(与点$B$重合,舍去)或$m = -4$,
此时点$A'$的坐标为$(-3,0)$;
③当$AB = BM$时,$4 - m = 5$,解得$m = -1$,
此时点$A'$的坐标为$(-\frac{3}{4},0)$。
综上,点$A'$的坐标为$(\frac{21}{32},0)$或$(-3,0)$或$(-\frac{3}{4},0)$。
