1. 如图,在$\triangle ABC$中,$\angle A = 90^{\circ}$,$BD$平分$\angle ABC$交$AC$于点$D$,$AB = 4$,$BD = 5$,$AD = 3$,若点$P$是$BC$上的动点,则线段$DP$长度的最小值是(

A. 3
B. 2.4
C. 4
D. 5
A
)
A. 3
B. 2.4
C. 4
D. 5
答案:1.A 点拨:当DP⊥BC时,DP最短,∵BD平分∠ABC,∠A=90°,∴当DP⊥BC时,DP=AD,∵AD=3,∴DP长度的最小值是3,故选A.
2. 如图,$AD$是$\triangle ABC$的角平分线,$DF \perp AB$,垂足为$F$,$DE = DG$,若$\triangle ADG$和$\triangle AED$的面积分别为 50 和 39,则$\triangle EDF$的面积为( )
A. 11
B. 5.5
C. 7
D. 3.5

A. 11
B. 5.5
C. 7
D. 3.5

答案:
2.B 点拨:如答图,作DM=DE交AC于点M,作DN⊥AC于点N.∵DE=DG,∴DM=DG.

在Rt△DMN和Rt△DGN中,
$\begin{cases}DM = DG\\DN = DN\end{cases}$
∴Rt△DMN≌Rt△DGN(HL).
∵AD是△ABC的角平分线,DF⊥AB,DN⊥AC,∴DF=DN,∠EAD=∠MAD.
在Rt△DEF和Rt△DMN中,
$\begin{cases}DE = DM\\DF = DN\end{cases}$
∴Rt△DEF≌Rt△DMN(HL),
∴∠DEF=∠DMN,∴∠AED=∠AMD.
在△AED和△AMD中,
$\begin{cases}\angle AED = \angle AMD\\\angle EAD = \angle MAD\\AD = AD\end{cases}$
∴△AED≌△AMD.
∵△ADG和△AED的面积分别为50和39,∴$S_{\triangle MDG}=S_{\triangle ADG}-S_{\triangle ADM}=50 - 39 = 11$,
∴$S_{\triangle DNM}=S_{\triangle EDF}=\frac{1}{2}S_{\triangle MDG}=\frac{1}{2}×11 = 5.5$.故选B.
2.B 点拨:如答图,作DM=DE交AC于点M,作DN⊥AC于点N.∵DE=DG,∴DM=DG.

在Rt△DMN和Rt△DGN中,
$\begin{cases}DM = DG\\DN = DN\end{cases}$
∴Rt△DMN≌Rt△DGN(HL).
∵AD是△ABC的角平分线,DF⊥AB,DN⊥AC,∴DF=DN,∠EAD=∠MAD.
在Rt△DEF和Rt△DMN中,
$\begin{cases}DE = DM\\DF = DN\end{cases}$
∴Rt△DEF≌Rt△DMN(HL),
∴∠DEF=∠DMN,∴∠AED=∠AMD.
在△AED和△AMD中,
$\begin{cases}\angle AED = \angle AMD\\\angle EAD = \angle MAD\\AD = AD\end{cases}$
∴△AED≌△AMD.
∵△ADG和△AED的面积分别为50和39,∴$S_{\triangle MDG}=S_{\triangle ADG}-S_{\triangle ADM}=50 - 39 = 11$,
∴$S_{\triangle DNM}=S_{\triangle EDF}=\frac{1}{2}S_{\triangle MDG}=\frac{1}{2}×11 = 5.5$.故选B.
3. 在$\triangle ABC$中,$D$是$BC$边上的点(不与点$B$,$C$重合),连接$AD$。
(1)如图①,当$D$是$BC$边的中点时,$S_{\triangle ABD}:S_{\triangle ACD}=$______;
(2)如图②,当$AD$是$\angle BAC$的平分线时,若$AB = m$,$AC = n$,求$S_{\triangle ABD}:S_{\triangle ACD}$的值;(用含$m$,$n$的代数式表示)
(3)如图③,$AD$平分$\angle BAC$,延长$AD$到点$E$,使得$DE = AD$,连接$BE$,如果$AC = 2$,$AB = 4$,$S_{\triangle BDE} = 6$,求$S_{\triangle ABC}$的值。

(1)如图①,当$D$是$BC$边的中点时,$S_{\triangle ABD}:S_{\triangle ACD}=$______;
(2)如图②,当$AD$是$\angle BAC$的平分线时,若$AB = m$,$AC = n$,求$S_{\triangle ABD}:S_{\triangle ACD}$的值;(用含$m$,$n$的代数式表示)
(3)如图③,$AD$平分$\angle BAC$,延长$AD$到点$E$,使得$DE = AD$,连接$BE$,如果$AC = 2$,$AB = 4$,$S_{\triangle BDE} = 6$,求$S_{\triangle ABC}$的值。

答案:
3.(1)1:1
(2)解:如答图,过点D作DE⊥AB于点E,DF⊥AC于点F.
∵AD为∠BAC的平分线,

∴DE=DF;
∵AB=m,AC=n,
∴$S_{\triangle ABD}:S_{\triangle ACD}=(\frac{1}{2}AB\cdot DE):(\frac{1}{2}AC\cdot DF)=AB:AC=m:n$.
(3)解:∵AD=DE,∴由(1)知$S_{\triangle ABD}:S_{\triangle EBD}=1:1$.
∵$S_{\triangle BDE}=6$,∴$S_{\triangle ABD}=6$.
∵AC=2,AB=4,AD平分∠CAB,
∴由(2)知$S_{\triangle ABD}:S_{\triangle ACD}=AB:AC=4:2 = 2:1$,
∴$S_{\triangle ACD}=3$,∴$S_{\triangle ABC}=3 + 6 = 9$.
3.(1)1:1
(2)解:如答图,过点D作DE⊥AB于点E,DF⊥AC于点F.
∵AD为∠BAC的平分线,

∴DE=DF;
∵AB=m,AC=n,
∴$S_{\triangle ABD}:S_{\triangle ACD}=(\frac{1}{2}AB\cdot DE):(\frac{1}{2}AC\cdot DF)=AB:AC=m:n$.
(3)解:∵AD=DE,∴由(1)知$S_{\triangle ABD}:S_{\triangle EBD}=1:1$.
∵$S_{\triangle BDE}=6$,∴$S_{\triangle ABD}=6$.
∵AC=2,AB=4,AD平分∠CAB,
∴由(2)知$S_{\triangle ABD}:S_{\triangle ACD}=AB:AC=4:2 = 2:1$,
∴$S_{\triangle ACD}=3$,∴$S_{\triangle ABC}=3 + 6 = 9$.