1. 两边及其
夹角
分别相等的两个三角形全等(简写成“边角边”或“SAS
”).答案:夹角 SAS
如图,在$\triangle ABC$和$\triangle DEF$中,
$\left\{\begin{array}{l} AB=DE,\\ ∠B=∠\underline{
$\therefore \triangle ABC\cong \triangle DEF(\underline{
$\left\{\begin{array}{l} AB=DE,\\ ∠B=∠\underline{
E
},\\ \underline{BC = EF
},\end{array}\right.$$\therefore \triangle ABC\cong \triangle DEF(\underline{
SAS
}).$答案:E $ BC = EF $ SAS
1. 如图,已知AD平分$∠BAC,AB=AC$. 求证:$\triangle ABD\cong \triangle ACD.$


答案:证明:$\because AD$平分$\angle BAC$,$\therefore \angle BAD = \angle CAD$,
在$\triangle ABD$和$\triangle ACD$中,
$\left\{\begin{array}{l} AB = AC,\\ \angle BAD = \angle CAD,\\ AD = AD,\end{array}\right.$ $\therefore \triangle ABD \cong \triangle ACD(SAS)$。
在$\triangle ABD$和$\triangle ACD$中,
$\left\{\begin{array}{l} AB = AC,\\ \angle BAD = \angle CAD,\\ AD = AD,\end{array}\right.$ $\therefore \triangle ABD \cong \triangle ACD(SAS)$。
2. 如图,点D在AB上,点E在AC上,BE和CD相交于点O,$AB=AC,AD=AE$. 求证:$BE=CD.$


答案:证明:在$\triangle ABE$和$\triangle ACD$中,
$\left\{\begin{array}{l} AB = AC,\\ \angle BAE = \angle CAD,\\ AE = AD,\end{array}\right.$ $\therefore \triangle ABE \cong \triangle ACD(SAS)$,
$\therefore BE = CD$。
$\left\{\begin{array}{l} AB = AC,\\ \angle BAE = \angle CAD,\\ AE = AD,\end{array}\right.$ $\therefore \triangle ABE \cong \triangle ACD(SAS)$,
$\therefore BE = CD$。
3. 如图,点E,F在BC上,$AB=DC,AF=DE,∠A=∠D.$
(1)证明:$∠B=∠C;$
(2)若$BE=3,EF=6$,求BC的长.

(1)证明:$∠B=∠C;$
(2)若$BE=3,EF=6$,求BC的长.

答案:(1) 证明:在$\triangle ABF$和$\triangle DCE$中,
$\left\{\begin{array}{l} AB = DC,\\ \angle A = \angle D,\\ AF = DE,\end{array}\right.$ $\therefore \triangle ABF \cong \triangle DCE(SAS)$,
$\therefore \angle B = \angle C$。
(2) 解:由(1)知,$\triangle ABF \cong \triangle DCE$,则$BF = CE = 3 + 6 = 9$。
故$BC = 2BF - EF = 2 × 9 - 6 = 12$,即$BC = 12$。
$\left\{\begin{array}{l} AB = DC,\\ \angle A = \angle D,\\ AF = DE,\end{array}\right.$ $\therefore \triangle ABF \cong \triangle DCE(SAS)$,
$\therefore \angle B = \angle C$。
(2) 解:由(1)知,$\triangle ABF \cong \triangle DCE$,则$BF = CE = 3 + 6 = 9$。
故$BC = 2BF - EF = 2 × 9 - 6 = 12$,即$BC = 12$。