(1)求 $5x^{2}y - 2xy^{2}$ 与 $-2xy^{2} + 4x^{2}y$ 的和;
答案:(5x²y-2xy²)+(-2xy²+4x²y)=9x²y-4xy².
解析:
$(5x^{2}y - 2xy^{2}) + (-2xy^{2} + 4x^{2}y) = 9x^{2}y - 4xy^{2}$
(2)求 $3x^{2} + x - 5$ 与 $4 - x + 7x^{2}$ 的差;
答案:(3x²+x-5)-(4-x+7x²)=-4x²+2x-9.
解析:
$(3x^{2}+x-5)-(4-x+7x^{2})$
$=3x^{2}+x-5-4+x-7x^{2}$
$=-4x^{2}+2x-9$
$=3x^{2}+x-5-4+x-7x^{2}$
$=-4x^{2}+2x-9$
(3)若两个多项式的和是 $2x^{2} + xy + 3y^{2}$,一个多项式是 $x^{2} - xy$,求另一个多项式;
答案:(2x²+xy+3y²)-(x²-xy)=x²+2xy+3y².
解析:
$(2x^{2}+xy+3y^{2})-(x^{2}-xy)=x^{2}+2xy+3y^{2}$
(4)若 $2a^{2} - 4ab + b^{2}$ 与一个多项式的差是 $-3a^{2} + 2ab - 5b^{2}$,求这个多项式;
答案:(2a²-4ab+b²)-(-3a²+2ab-5b²)=5a²-6ab+6b².
解析:
设这个多项式为$M$,则依题意有:
$(2a^{2} - 4ab + b^{2}) - M = -3a^{2} + 2ab - 5b^{2}$
$M=(2a^{2}-4ab + b^{2})-(-3a^{2}+2ab - 5b^{2})$
$=2a^{2}-4ab + b^{2}+3a^{2}-2ab + 5b^{2}$
$=5a^{2}-6ab + 6b^{2}$
$(2a^{2} - 4ab + b^{2}) - M = -3a^{2} + 2ab - 5b^{2}$
$M=(2a^{2}-4ab + b^{2})-(-3a^{2}+2ab - 5b^{2})$
$=2a^{2}-4ab + b^{2}+3a^{2}-2ab + 5b^{2}$
$=5a^{2}-6ab + 6b^{2}$
(5)已知 $M = 3x^{2} + 2x - 1$,$N = -x^{2} - 2 + 3x$,求 $M - 2N$;
答案:M-2N=5x²-4x+3.
解析:
M - 2N = (3x² + 2x - 1) - 2(-x² - 2 + 3x)
= 3x² + 2x - 1 + 2x² + 4 - 6x
= 5x² - 4x + 3
= 3x² + 2x - 1 + 2x² + 4 - 6x
= 5x² - 4x + 3
(6)已知 $A = x^{2} + xy + y^{2}$,$B = -3xy - x^{2}$,求 $2A - 3B$。
答案:2A-3B=5x²+11xy+2y².
解析:
2A - 3B = 2(x² + xy + y²) - 3(-3xy - x²)
= 2x² + 2xy + 2y² + 9xy + 3x²
= 5x² + 11xy + 2y²
= 2x² + 2xy + 2y² + 9xy + 3x²
= 5x² + 11xy + 2y²