3. 一本课外书有54页,小刚从第一页开始看,第一天看了全书的$\frac {2}{9}$,第二天看了剩下的$\frac {1}{7}$。第三天他应该从哪一页看起?
答案:$54× \frac{2}{9}+(54-54× \frac{2}{9})× \frac{1}{7}=18$(页) 第三天应该从 19 页看起。【提示】先求出第一天和第二天一共看了多少页,再从下一页开始看起。
解析:
第一天看的页数:$54×\frac{2}{9}=12$(页)
剩下的页数:$54 - 12 = 42$(页)
第二天看的页数:$42×\frac{1}{7}=6$(页)
两天共看的页数:$12 + 6 = 18$(页)
第三天开始看的页数:$18 + 1 = 19$(页)
第三天他应该从19页看起。
剩下的页数:$54 - 12 = 42$(页)
第二天看的页数:$42×\frac{1}{7}=6$(页)
两天共看的页数:$12 + 6 = 18$(页)
第三天开始看的页数:$18 + 1 = 19$(页)
第三天他应该从19页看起。
4. 跨学科动物睡眠时间研究表明,动物界的掠食者要比它们的猎物睡更长时间。野生老虎每天的睡眠时间约是15小时,而野马每天的睡眠时间比老虎少$\frac {4}{5}$,野狼每天的睡眠时间是野马的$\frac {11}{3}$。野狼每天的睡眠时间大约是多少小时?
答案:$(15-15× \frac{4}{5})× \frac{11}{3}=11$(小时)【提示】先求出野马每天的睡眠时间,再求出野狼每天的睡眠时间。
解析:
$15×(1-\frac{4}{5})×\frac{11}{3}=11$(小时)
5. 一根绳子长180米,已用去的和剩下的长度之比是$2:7$。再用去多少米正好剩下这根绳子的$\frac {1}{2}$?
答案:$180× \frac{1}{2}-180× \frac{2}{7+2}=50$(米)【提示】要剩下一半,也就是用去一半,即用去$(180× \frac{1}{2})$米,根据已用去的和剩下的长度比是$2:7$,得出已用去全长的$(180× \frac{2}{2+7})$米,二者作差即可。
解析:
$180×\frac{1}{2}-180×\frac{2}{2+7}$
$=90 - 180×\frac{2}{9}$
$=90 - 40$
$=50$(米)
答:再用去50米正好剩下这根绳子的$\frac{1}{2}$。
$=90 - 180×\frac{2}{9}$
$=90 - 40$
$=50$(米)
答:再用去50米正好剩下这根绳子的$\frac{1}{2}$。
6. 甲、乙两人共有750元零花钱,乙、丙两人共有600元零花钱。已知乙的零花钱占三人零花钱总数的$\frac {1}{2}$。乙有多少元零花钱?
答案:$750+600=1350$(元) $1350÷ (1+\frac{1}{2})× \frac{1}{2}=450$(元)【提示】$750+600=1350$(元)表示的是甲、乙、丙三人的零花钱与乙的零花钱之和,把甲、乙、丙三人的零花钱看作单位“1”,根据题意,1350 元对应的分率为$(1+\frac{1}{2})$,从而可求出甲、乙、丙三人零花钱的总和,进而求出乙有多少元零花钱。
解析:
$750 + 600 = 1350$(元)
$1350÷\left(1 + \frac{1}{2}\right)×\frac{1}{2} = 450$(元)
答:乙有$450$元零花钱。
$1350÷\left(1 + \frac{1}{2}\right)×\frac{1}{2} = 450$(元)
答:乙有$450$元零花钱。
有甲、乙两个粮仓,乙粮仓的粮食质量是甲粮仓的$\frac {3}{5}$,现在从甲粮仓运出3吨粮食放入乙粮仓后,乙粮仓的粮食质量是甲粮仓的$\frac {7}{9}$。甲、乙两粮仓共有粮食多少吨?
答案:$3÷ (\frac{7}{9+7}-\frac{3}{5+3})=48$(吨)【提示】原来乙粮仓的粮食质量是甲粮仓的$\frac{3}{5}$,那么乙粮仓粮食质量是两粮仓粮食总质量的$\frac{3}{5+3}$;现在从甲粮仓运出 3 吨粮食放入乙粮仓后,乙粮仓的粮食质量是甲粮仓的$\frac{7}{9}$,即乙粮仓增加了 3 吨粮食后,乙粮仓的粮食质量是两粮仓粮食总质量的$\frac{7}{9+7}$,3 吨对应两粮仓粮食总质量的$(\frac{7}{9+7}-\frac{3}{5+3})$,所以甲、乙两粮仓共有粮食$3÷ (\frac{7}{9+7}-\frac{3}{5+3})=48$(吨)。
解析:
原来乙粮仓粮食质量占总质量的比例为$\frac{3}{5+3}=\frac{3}{8}$,现在乙粮仓粮食质量占总质量的比例为$\frac{7}{9+7}=\frac{7}{16}$,3吨对应的分率为$\frac{7}{16}-\frac{3}{8}=\frac{1}{16}$,两粮仓共有粮食$3÷\frac{1}{16}=48$吨。
答:甲、乙两粮仓共有粮食48吨。
答:甲、乙两粮仓共有粮食48吨。