1. 下列多项式去括号后等于$a - b + c$的是(
A.$a-(b + c)$
B.$a-(b - c)$
C.$a-(c - b)$
D.$a+(b + c)$
B
)A.$a-(b + c)$
B.$a-(b - c)$
C.$a-(c - b)$
D.$a+(b + c)$
答案:B
解析:
解:
A. $a-(b + c) = a - b - c$
B. $a-(b - c) = a - b + c$
C. $a-(c - b) = a - c + b$
D. $a+(b + c) = a + b + c$
答案:B
A. $a-(b + c) = a - b - c$
B. $a-(b - c) = a - b + c$
C. $a-(c - b) = a - c + b$
D. $a+(b + c) = a + b + c$
答案:B
2. 化简$-[x-(y - z)]$的结果为(
A.$-x + y + z$
B.$x - y + z$
C.$-x + y - z$
D.$x + y - z$
C
)A.$-x + y + z$
B.$x - y + z$
C.$-x + y - z$
D.$x + y - z$
答案:C
解析:
解:$-[x-(y - z)]$
$=-(x - y + z)$
$=-x + y - z$
答案:C
$=-(x - y + z)$
$=-x + y - z$
答案:C
3. (易错题)(2024·海安期中)下列各式中,去括号正确的是(
A.$-(-a - b)= a - b$
B.$a^{2}+2(a - 2b)= a^{2}+2a - 2b$
C.$5x-(x - 1)= 5x - x + 1$
D.$3x^{2}-\frac{1}{4}(x^{2}-y^{2})= 3x^{2}-\frac{1}{4}x^{2}-y^{2}$
C
)A.$-(-a - b)= a - b$
B.$a^{2}+2(a - 2b)= a^{2}+2a - 2b$
C.$5x-(x - 1)= 5x - x + 1$
D.$3x^{2}-\frac{1}{4}(x^{2}-y^{2})= 3x^{2}-\frac{1}{4}x^{2}-y^{2}$
答案:C [易错分析]去括号时容易漏乘括号外的数或忘记改变符号致错.
4. 不改变$3a^{2}-2b^{2}-b + a + ab$的值,把二次项放在前面有“+”号的括号内,一次项放在前面有“-”号的括号内,则下列各式正确的是(
A.$+(3a^{2}+2b^{2}+ab)-(b + a)$
B.$+(-3a^{2}-2b^{2}-ab)-(b - a)$
C.$+(3a^{2}-2b^{2}+ab)-(b - a)$
D.$+(-3a^{2}+2b^{2}+ab)-(b - a)$
C
)A.$+(3a^{2}+2b^{2}+ab)-(b + a)$
B.$+(-3a^{2}-2b^{2}-ab)-(b - a)$
C.$+(3a^{2}-2b^{2}+ab)-(b - a)$
D.$+(-3a^{2}+2b^{2}+ab)-(b - a)$
答案:C
解析:
解:原式二次项为$3a^{2}$、$-2b^{2}$、$ab$,一次项为$-b$、$a$。
将二次项放在“+”号括号内:$+(3a^{2}-2b^{2}+ab)$
一次项放在“-”号括号内,提取“-”号后括号内为$b - a$,即$-(b - a)$
所以原式可写为$+(3a^{2}-2b^{2}+ab)-(b - a)$
答案:C
将二次项放在“+”号括号内:$+(3a^{2}-2b^{2}+ab)$
一次项放在“-”号括号内,提取“-”号后括号内为$b - a$,即$-(b - a)$
所以原式可写为$+(3a^{2}-2b^{2}+ab)-(b - a)$
答案:C
5. (教材P100练习第2题变式)将下列各式去括号:
(1)$(a - b)-(c - d)= $
(2)$-(a + b)+(-c - d)= $
(3)$-(a - b)-2(c - d)= $
(4)$(a + b)-3(c - d)= $
(1)$(a - b)-(c - d)= $
a - b - c + d
;(2)$-(a + b)+(-c - d)= $
-a - b - c - d
;(3)$-(a - b)-2(c - d)= $
-a + b - 2c + 2d
;(4)$(a + b)-3(c - d)= $
a + b - 3c + 3d
。答案:(1)a - b - c + d (2)-a - b - c - d (3)-a + b - 2c + 2d (4)a + b - 3c + 3d
6. (教材P100练习第4题变式)某市出租车收费标准为3千米及以内收费10元,3千米以后每增加1千米加收2.5元(不足1千米按1千米算).小明乘坐出租车行驶了$x$千米($x>3$,且$x$为整数),则小明应付
(2.5x + 2.5)
元.答案:(2.5x + 2.5)
解析:
解:因为$x>3$且$x$为整数,前3千米收费10元,超过3千米的部分为$(x - 3)$千米,每千米加收2.5元,所以超过部分费用为$2.5(x - 3)$元。
总费用 = 前3千米费用 + 超过3千米部分费用,即:
$10 + 2.5(x - 3)$
$=10 + 2.5x - 7.5$
$=2.5x + 2.5$
2.5x + 2.5
总费用 = 前3千米费用 + 超过3千米部分费用,即:
$10 + 2.5(x - 3)$
$=10 + 2.5x - 7.5$
$=2.5x + 2.5$
2.5x + 2.5
7. 一根长为$5a + 4b$的铁丝,剪下一部分围成一个长为$a$、宽为$b$的长方形,则这根铁丝剩余部分的长为
3a + 2b
。答案:3a + 2b
解析:
解:长方形周长为 $2(a + b) = 2a + 2b$,剩余部分长为 $(5a + 4b) - (2a + 2b) = 3a + 2b$。
$3a + 2b$
$3a + 2b$
8. (教材P99例4变式)化简:
(1)$(3x - 7)-2(-4x + 5)$;
(2)$3(2x^{2}-y^{2})-2(3y^{2}-2x^{2})$;
(3)$(5a^{2}-2a - 1)-4(3 - 2a + a^{2})$;
(4)$\frac{1}{2}x-2(x-\frac{1}{3}y^{2})+(\frac{2}{3}x+\frac{1}{3}y^{2})$。
(1)$(3x - 7)-2(-4x + 5)$;
(2)$3(2x^{2}-y^{2})-2(3y^{2}-2x^{2})$;
(3)$(5a^{2}-2a - 1)-4(3 - 2a + a^{2})$;
(4)$\frac{1}{2}x-2(x-\frac{1}{3}y^{2})+(\frac{2}{3}x+\frac{1}{3}y^{2})$。
答案:(1)
$\begin{aligned}&(3x - 7)-2(-4x + 5)\\=&3x - 7 + 8x - 10\\=&(3x + 8x)+(-7 - 10)\\=&11x - 17\end{aligned}$
(2)
$\begin{aligned}&3(2x^{2}-y^{2})-2(3y^{2}-2x^{2})\\=&6x^{2}-3y^{2}-6y^{2}+4x^{2}\\=&(6x^{2}+4x^{2})+(-3y^{2}-6y^{2})\\=&10x^{2}-9y^{2}\end{aligned}$
(3)
$\begin{aligned}&(5a^{2}-2a - 1)-4(3 - 2a + a^{2})\\=&5a^{2}-2a - 1 - 12 + 8a - 4a^{2}\\=&(5a^{2}-4a^{2})+(-2a + 8a)+(-1 - 12)\\=&a^{2}+6a - 13\end{aligned}$
(4)
$\begin{aligned}&\frac{1}{2}x-2(x-\frac{1}{3}y^{2})+(\frac{2}{3}x+\frac{1}{3}y^{2})\\=&\frac{1}{2}x - 2x + \frac{2}{3}y^{2} + \frac{2}{3}x + \frac{1}{3}y^{2}\\=&(\frac{1}{2}x - 2x + \frac{2}{3}x)+(\frac{2}{3}y^{2}+\frac{1}{3}y^{2})\\=&(\frac{3}{6}x - \frac{12}{6}x + \frac{4}{6}x)+y^{2}\\=&-\frac{5}{6}x + y^{2}\end{aligned}$
$\begin{aligned}&(3x - 7)-2(-4x + 5)\\=&3x - 7 + 8x - 10\\=&(3x + 8x)+(-7 - 10)\\=&11x - 17\end{aligned}$
(2)
$\begin{aligned}&3(2x^{2}-y^{2})-2(3y^{2}-2x^{2})\\=&6x^{2}-3y^{2}-6y^{2}+4x^{2}\\=&(6x^{2}+4x^{2})+(-3y^{2}-6y^{2})\\=&10x^{2}-9y^{2}\end{aligned}$
(3)
$\begin{aligned}&(5a^{2}-2a - 1)-4(3 - 2a + a^{2})\\=&5a^{2}-2a - 1 - 12 + 8a - 4a^{2}\\=&(5a^{2}-4a^{2})+(-2a + 8a)+(-1 - 12)\\=&a^{2}+6a - 13\end{aligned}$
(4)
$\begin{aligned}&\frac{1}{2}x-2(x-\frac{1}{3}y^{2})+(\frac{2}{3}x+\frac{1}{3}y^{2})\\=&\frac{1}{2}x - 2x + \frac{2}{3}y^{2} + \frac{2}{3}x + \frac{1}{3}y^{2}\\=&(\frac{1}{2}x - 2x + \frac{2}{3}x)+(\frac{2}{3}y^{2}+\frac{1}{3}y^{2})\\=&(\frac{3}{6}x - \frac{12}{6}x + \frac{4}{6}x)+y^{2}\\=&-\frac{5}{6}x + y^{2}\end{aligned}$
解析:
(1)
$\begin{aligned}&(3x - 7)-2(-4x + 5)\\=&3x - 7 + 8x - 10\\=&(3x + 8x)+(-7 - 10)\\=&11x - 17\end{aligned}$
(2)
$\begin{aligned}&3(2x^{2}-y^{2})-2(3y^{2}-2x^{2})\\=&6x^{2}-3y^{2}-6y^{2}+4x^{2}\\=&(6x^{2}+4x^{2})+(-3y^{2}-6y^{2})\\=&10x^{2}-9y^{2}\end{aligned}$
(3)
$\begin{aligned}&(5a^{2}-2a - 1)-4(3 - 2a + a^{2})\\=&5a^{2}-2a - 1 - 12 + 8a - 4a^{2}\\=&(5a^{2}-4a^{2})+(-2a + 8a)+(-1 - 12)\\=&a^{2}+6a - 13\end{aligned}$
(4)
$\begin{aligned}&\frac{1}{2}x-2(x-\frac{1}{3}y^{2})+(\frac{2}{3}x+\frac{1}{3}y^{2})\\=&\frac{1}{2}x - 2x + \frac{2}{3}y^{2} + \frac{2}{3}x + \frac{1}{3}y^{2}\\=&(\frac{1}{2}x - 2x + \frac{2}{3}x)+(\frac{2}{3}y^{2}+\frac{1}{3}y^{2})\\=&(\frac{3}{6}x - \frac{12}{6}x + \frac{4}{6}x)+y^{2}\\=&-\frac{5}{6}x + y^{2}\end{aligned}$
$\begin{aligned}&(3x - 7)-2(-4x + 5)\\=&3x - 7 + 8x - 10\\=&(3x + 8x)+(-7 - 10)\\=&11x - 17\end{aligned}$
(2)
$\begin{aligned}&3(2x^{2}-y^{2})-2(3y^{2}-2x^{2})\\=&6x^{2}-3y^{2}-6y^{2}+4x^{2}\\=&(6x^{2}+4x^{2})+(-3y^{2}-6y^{2})\\=&10x^{2}-9y^{2}\end{aligned}$
(3)
$\begin{aligned}&(5a^{2}-2a - 1)-4(3 - 2a + a^{2})\\=&5a^{2}-2a - 1 - 12 + 8a - 4a^{2}\\=&(5a^{2}-4a^{2})+(-2a + 8a)+(-1 - 12)\\=&a^{2}+6a - 13\end{aligned}$
(4)
$\begin{aligned}&\frac{1}{2}x-2(x-\frac{1}{3}y^{2})+(\frac{2}{3}x+\frac{1}{3}y^{2})\\=&\frac{1}{2}x - 2x + \frac{2}{3}y^{2} + \frac{2}{3}x + \frac{1}{3}y^{2}\\=&(\frac{1}{2}x - 2x + \frac{2}{3}x)+(\frac{2}{3}y^{2}+\frac{1}{3}y^{2})\\=&(\frac{3}{6}x - \frac{12}{6}x + \frac{4}{6}x)+y^{2}\\=&-\frac{5}{6}x + y^{2}\end{aligned}$
9. 若关于$x,y的整式(-3kxy + 3y)+(9xy - 8x + 1)$中不含二次项,则$k$的值是(
A.4
B.$\frac{1}{3}$
C.3
D.$\frac{1}{4}$
C
)A.4
B.$\frac{1}{3}$
C.3
D.$\frac{1}{4}$
答案:C 解析:原式=(-3k + 9)xy + 3y - 8x + 1.因为关于x,y的整式(-3kxy + 3y)+(9xy - 8x + 1)中不含二次项,所以-3k + 9 = 0,解得k = 3.