25. (13分)如图,点$C$在以$AB$为直径的$\odot O$上,点$D$在$BA$的延长线上,$\angle DCA=\angle CBA$.
(1) 求证:$DC$是$\odot O$的切线.
(2) $G$是半径$OB$上的点,过点$G$作$OB$的垂线,与$BC$交于点$F$,与$DC$的延长线交于点$E$.若$\sin D=\frac{4}{5}$,$DA=FG=2$,求$CE$的长.

(1) 求证:$DC$是$\odot O$的切线.
(2) $G$是半径$OB$上的点,过点$G$作$OB$的垂线,与$BC$交于点$F$,与$DC$的延长线交于点$E$.若$\sin D=\frac{4}{5}$,$DA=FG=2$,求$CE$的长.
答案:
25.(1)如图,连接OC.
∵$OB = OC$,
∴∠OBC = ∠OCB.
∵∠DCA = ∠CBA,即∠DCA = ∠OBC,
∴∠DCA = ∠OCB.
∵AB是⊙O的直径,
∴∠ACB = 90°.
∴∠DCA + ∠OCA = ∠OCB + ∠OCA = 90°.
∴∠OCD = 90°.
∴$OC⊥DC$.又
∵OC是⊙O的半径,
∴DC是⊙O的切线. (2)设$OC = OA = r$.由(1)知,∠OCD = 90°,
∴在Rt△OCD中,$\sin D = \frac{OC}{OD} = \frac{4}{5}$.
∴$\frac{r}{r + 2} = \frac{4}{5}$,
∴$r = 8$.
∴$OC = OA = 8$.在Rt△OCD中,$CD = \sqrt{OD^2 - OC^2} = \sqrt{(8 + 2)^2 - 8^2} = 6$.
∵$EG⊥OB$,
∴∠EGB = ∠EGD = 90°.
∴∠BFG + ∠CBA = 90°.
∵AB是⊙O的直径,
∴∠ACB = 90°.
∴∠DCA + ∠ECF = 90°.
∵∠DCA = ∠CBA,
∴∠ECF = ∠BFG.又
∵∠BFG = ∠EFC,
∴∠ECF = ∠EFC.
∴$EC = EF$.设$EC = EF = x$.
∵∠D = ∠D,∠DCO = ∠DGE = 90°,
∴△DOC∽△DEG.
∴$\frac{DO}{DE} = \frac{OC}{EG}$,即$\frac{2 + 8}{x + 6} = \frac{8}{x + 2}$,解得$x = 14$.
∴CE的长为14.

25.(1)如图,连接OC.
∵$OB = OC$,
∴∠OBC = ∠OCB.
∵∠DCA = ∠CBA,即∠DCA = ∠OBC,
∴∠DCA = ∠OCB.
∵AB是⊙O的直径,
∴∠ACB = 90°.
∴∠DCA + ∠OCA = ∠OCB + ∠OCA = 90°.
∴∠OCD = 90°.
∴$OC⊥DC$.又
∵OC是⊙O的半径,
∴DC是⊙O的切线. (2)设$OC = OA = r$.由(1)知,∠OCD = 90°,
∴在Rt△OCD中,$\sin D = \frac{OC}{OD} = \frac{4}{5}$.
∴$\frac{r}{r + 2} = \frac{4}{5}$,
∴$r = 8$.
∴$OC = OA = 8$.在Rt△OCD中,$CD = \sqrt{OD^2 - OC^2} = \sqrt{(8 + 2)^2 - 8^2} = 6$.
∵$EG⊥OB$,
∴∠EGB = ∠EGD = 90°.
∴∠BFG + ∠CBA = 90°.
∵AB是⊙O的直径,
∴∠ACB = 90°.
∴∠DCA + ∠ECF = 90°.
∵∠DCA = ∠CBA,
∴∠ECF = ∠BFG.又
∵∠BFG = ∠EFC,
∴∠ECF = ∠EFC.
∴$EC = EF$.设$EC = EF = x$.
∵∠D = ∠D,∠DCO = ∠DGE = 90°,
∴△DOC∽△DEG.
∴$\frac{DO}{DE} = \frac{OC}{EG}$,即$\frac{2 + 8}{x + 6} = \frac{8}{x + 2}$,解得$x = 14$.
∴CE的长为14.