6. 如图,小颖和小琴想用所学知识测量一个路灯$AB$的高度.首先,小颖在地面上平放一面平面镜,并在镜面上做了一个标记,这个标记在直线$BD$上的对应位置为点$E$,平面镜不动,然后小琴看着镜面上的标记沿直线$BD$来回走动,当她走到点$D$处时,恰好在镜子中看到路灯顶端$A$的像与镜面上的标记重合,此时,小颖测得$DE = 2\ m$,小琴的眼睛到地面的距离$CD = 1.5\ m$,接着,小颖在距离点$E$处$2\ m$的点$F$处测得$\angle AFB = 45^{\circ}$.已知$CD\perp BD$,$AB\perp BD$,点$D$,$E$,$F$,$B$在同一条直线上,请你根据以上信息,求路灯$AB$的高度.

答案:6. $\because AB\perp BD,\angle AFB=45°,\therefore$易得$AB=BF.\because CD\perp BD$,
$AB\perp BD,\therefore \angle CDE=\angle ABE=90°.\because \angle CED=\angle AEB$,
$\therefore \triangle CDE \sim \triangle ABE.\therefore \frac{CD}{AB}=\frac{DE}{BE}$.设$AB=x$m.$\because CD=1.5$m,
$DE=EF=2$m$,\therefore \frac{1.5}{x}=\frac{2}{2+x}$,解得$x=6.\therefore AB=6$m.$\therefore$路
灯$AB$的高度为$6$m
$AB\perp BD,\therefore \angle CDE=\angle ABE=90°.\because \angle CED=\angle AEB$,
$\therefore \triangle CDE \sim \triangle ABE.\therefore \frac{CD}{AB}=\frac{DE}{BE}$.设$AB=x$m.$\because CD=1.5$m,
$DE=EF=2$m$,\therefore \frac{1.5}{x}=\frac{2}{2+x}$,解得$x=6.\therefore AB=6$m.$\therefore$路
灯$AB$的高度为$6$m
7. 如图,数学兴趣小组开展了“测量宝塔$AB$的高度”的实践活动,在点$C$处垂直于地面竖立一根高度为$2$米的标杆$CD$,这时地面上的点$E$、标杆的顶端$D$、宝塔的塔尖$B$正好在同一条直线上,测得$EC = 1$米,将标杆$CD$向右平移到点$G$处,这时地面上的点$F$、标杆的顶端$H$、宝塔的塔尖$B$正好在同一条直线上(点$F$,$G$,$E$,$C$与宝塔的塔底$A$在同一条直线上),这时测得$FG = 3$米,$GC = 51.2$米.请你根据以上数据计算宝塔$AB$的高度.

答案:
根据题意,得$\angle DEC=\angle BEA$,$\angle DCE=\angle BAE = 90^{\circ}$,
$\therefore \triangle EDC\backsim\triangle EBA$.$\therefore \frac{DC}{BA}=\frac{EC}{EA}$.根据题意,得$\angle HFG=\angle BFA$,$\angle HGF=\angle BAF = 90^{\circ}$,$\therefore \triangle FHG\backsim\triangle FBA$.
$\therefore \frac{HG}{BA}=\frac{FG}{FA}$.$\because DC = HG$,$\therefore \frac{FG}{FA}=\frac{EC}{EA}$.设$AC = x$米.
$\therefore \frac{3}{x + 51.2 + 3}=\frac{1}{x + 1}$,解得$x = 25.6$.$\therefore AC = 25.6$米.设$AB = y$米.$\because \frac{DC}{BA}=\frac{EC}{EA}$,$\therefore \frac{2}{y}=\frac{1}{1 + 25.6}$,解得$y = 53.2$.
$\therefore AB = 53.2$米.$\therefore$宝塔$AB$的高度为$53.2$米