3. 已知$30^{\circ}<\alpha<60^{\circ}$,下列各式中,正确的是(
A.$\frac{\sqrt{2}}{2}<\cos\alpha<\frac{\sqrt{3}}{2}$
B.$\frac{\sqrt{3}}{2}<\cos\alpha<\frac{1}{2}$
C.$\frac{1}{2}<\cos\alpha<\frac{\sqrt{2}}{2}$
D.$\frac{1}{2}<\cos\alpha<\frac{\sqrt{3}}{2}$
D
).A.$\frac{\sqrt{2}}{2}<\cos\alpha<\frac{\sqrt{3}}{2}$
B.$\frac{\sqrt{3}}{2}<\cos\alpha<\frac{1}{2}$
C.$\frac{1}{2}<\cos\alpha<\frac{\sqrt{2}}{2}$
D.$\frac{1}{2}<\cos\alpha<\frac{\sqrt{3}}{2}$
答案:D
4. 求下列各式的值.
(1)$2\sin 30^{\circ}-\cos 45^{\circ}$;
(2)$\sin^{2}45^{\circ}+\tan 30^{\circ}·\sin 60^{\circ}$;
(3)$\sin^{2}30^{\circ}+\cos^{2}30^{\circ}$.
(1)$2\sin 30^{\circ}-\cos 45^{\circ}$;
(2)$\sin^{2}45^{\circ}+\tan 30^{\circ}·\sin 60^{\circ}$;
(3)$\sin^{2}30^{\circ}+\cos^{2}30^{\circ}$.
答案: 解:原式$=2×\frac {1}{2}-\frac {\sqrt{2}}{2}\ $
$=1-\frac {\sqrt{2}}{2}$
解:原式$=(\frac {\sqrt{2}}{2})²×\frac {\sqrt{3}}{3}×\frac {\sqrt{3}}{2}\ $
$=\frac {1}{2}+\frac {1}{2}\ $
=1
解:原式$=(\frac {1}{2})²+(\frac {\sqrt{3}}{2})²$
$ =\frac {1}{4}+\frac {3}{4}$
=1
$=1-\frac {\sqrt{2}}{2}$
解:原式$=(\frac {\sqrt{2}}{2})²×\frac {\sqrt{3}}{3}×\frac {\sqrt{3}}{2}\ $
$=\frac {1}{2}+\frac {1}{2}\ $
=1
解:原式$=(\frac {1}{2})²+(\frac {\sqrt{3}}{2})²$
$ =\frac {1}{4}+\frac {3}{4}$
=1
5. 求满足下列条件的锐角.
(1)$\sin\alpha - \frac{\sqrt{3}}{2}=0$;
(2)$-2\cos\alpha+\sqrt{3}=0$;
(3)$\tan(\alpha + 10^{\circ})=\sqrt{3}$.
(1)$\sin\alpha - \frac{\sqrt{3}}{2}=0$;
(2)$-2\cos\alpha+\sqrt{3}=0$;
(3)$\tan(\alpha + 10^{\circ})=\sqrt{3}$.
答案:解:$sin α=\frac {\sqrt{3}}{2}$
∴α=60°
解:$2cos α=\sqrt{3}$
$ cos α=\frac {\sqrt{3}}{2}$
∴α=30°
解:α+10°=60°
α=50°
∴α=60°
解:$2cos α=\sqrt{3}$
$ cos α=\frac {\sqrt{3}}{2}$
∴α=30°
解:α+10°=60°
α=50°
6. 已知$\sin(\alpha - \beta)=\sin\alpha·\cos\beta - \cos\alpha·\sin\beta$,请利用特殊角的三角函数值计算$\sin 15^{\circ}$的值.
答案:解:sin 15°=sin (45°-30°)
=sin 45° · cos 30°-cos 45° · sin 30°
$=\frac {\sqrt 2}2×\frac {\sqrt 3}2-\frac {\sqrt 2}2×\frac 12$
$=\frac {\sqrt 6-\sqrt 2}4$
=sin 45° · cos 30°-cos 45° · sin 30°
$=\frac {\sqrt 2}2×\frac {\sqrt 3}2-\frac {\sqrt 2}2×\frac 12$
$=\frac {\sqrt 6-\sqrt 2}4$
1. 如图,以点$O$为圆心,任意长为半径画弧,与射线$OM$交于点$A$,再以点$A$为圆心,$AO$长为半径画弧,两弧交于点$B$,画射线$OB$,则$\cos\angle AOB =$
$\frac{1}{2}$
. 答案:1. $\frac{1}{2}$
解析:
解:由题意可知,$OA = OB$(均为以点$O$为圆心所画弧的半径),$AB = AO$(以点$A$为圆心,$AO$长为半径画弧),所以$OA = OB = AB$,即$\triangle AOB$是等边三角形。因此,$\angle AOB = 60°$,则$\cos\angle AOB=\cos60° = \frac{1}{2}$。
$\frac{1}{2}$
$\frac{1}{2}$
2. 在$Rt\triangle ABC$中,$\angle C = 90^{\circ},AB = 2BC$.有下列结论:①$\sin A=\frac{\sqrt{3}}{2}$;②$\cos B=\frac{1}{2}$;③$\tan A=\frac{\sqrt{3}}{3}$;④$\tan B=\sqrt{3}$.其中,正确的是
②③④
(填序号).答案:$\frac {1}{2}$
②③④
②③④
3. 如图,在距离水面$5\mathrm{m}$高的岸上有人用绳子拉船靠岸.开始时绳子与水面的夹角为$30^{\circ}$,此人以$0.5\mathrm{m/s}$的速度收绳.求$8\mathrm{s}$后船向岸边移动的距离.
答案:解:∵$sin 30°=\frac {AC}{BC}=\frac {1}{2}$
∴BC=10m
$AB=\sqrt{BC²-AC²}=\sqrt{10²-5²}=5\sqrt{3}$
CD= BC- 0.5×8= 6m
$AD= \sqrt{CD²-AC²}=\sqrt{11}$
∴$BD= AB- AD= (5\sqrt{3}-\sqrt{11})m$
答: 8s 后船向岸边移动的距离为$(5\sqrt{3}-\sqrt{11})m。$
∴BC=10m
$AB=\sqrt{BC²-AC²}=\sqrt{10²-5²}=5\sqrt{3}$
CD= BC- 0.5×8= 6m
$AD= \sqrt{CD²-AC²}=\sqrt{11}$
∴$BD= AB- AD= (5\sqrt{3}-\sqrt{11})m$
答: 8s 后船向岸边移动的距离为$(5\sqrt{3}-\sqrt{11})m。$