9. 如图,如果$AB // CD$,$∠\alpha = 145^{\circ}$,$∠\beta = 60^{\circ}$,那么$∠\gamma$的度数是

25°
.答案:
9.25° 解析:如图,过点 E 作 EF//AB.
∴∠BAE + ∠AEF = 180°.
∵∠BAE = ∠α = 145°,
∴∠AEF = 35°.
∵∠AED = ∠β = 60°,
∴∠DEF = 25°.
∵AB//CD,EF//AB,
∴EF//CD.
∴∠γ = ∠DEF = 25°.

9.25° 解析:如图,过点 E 作 EF//AB.
∴∠BAE + ∠AEF = 180°.
∵∠BAE = ∠α = 145°,
∴∠AEF = 35°.
∵∠AED = ∠β = 60°,
∴∠DEF = 25°.
∵AB//CD,EF//AB,
∴EF//CD.
∴∠γ = ∠DEF = 25°.
10. 如图,潜望镜中的两面镜子$AB$,$CD$互相平行. 光线经过镜子反射时,$∠1 = ∠2$,$∠3 = ∠4$. 请说明为什么进入潜望镜的光线$FE$与离开潜望镜的光线$GH$是互相平行的.

答案:10.
∵AB//CD,
∴∠2 = ∠3.
∵∠1 = ∠2,∠3 = ∠4,
∴∠1 = ∠2 = ∠3 = ∠4.
∵∠GEF = 180°- ∠1 - ∠2,∠EGH = 180°- ∠3 - ∠4,
∴∠GEF = ∠EGH.
∴FE//GH.
∴进入潜望镜的光线 FE 与离开潜望镜的光线 GH 是互相平行的
∵AB//CD,
∴∠2 = ∠3.
∵∠1 = ∠2,∠3 = ∠4,
∴∠1 = ∠2 = ∠3 = ∠4.
∵∠GEF = 180°- ∠1 - ∠2,∠EGH = 180°- ∠3 - ∠4,
∴∠GEF = ∠EGH.
∴FE//GH.
∴进入潜望镜的光线 FE 与离开潜望镜的光线 GH 是互相平行的
11. 如图,$∠1 = ∠BDE$,$∠2 + ∠3 = 180^{\circ}$.
(1)试说明:$AD // EF$;
(2)若$DA$平分$∠BDE$,$FE ⊥ AF$于点$F$,$∠1 = 50^{\circ}$,求$∠BAC$的度数.

(1)试说明:$AD // EF$;
(2)若$DA$平分$∠BDE$,$FE ⊥ AF$于点$F$,$∠1 = 50^{\circ}$,求$∠BAC$的度数.
答案:11.(1)
∵∠1 = ∠BDE,
∴AC//DE.
∴∠2 = ∠ADE.
∵∠2 + ∠3 = 180°,
∴∠3 + ∠ADE = 180°.
∴AD//EF
(2)
∵∠1 = ∠BDE,∠1 = 50°,
∴∠BDE = 50°.
∵DA 平分∠BDE,
∴$∠ADE = \frac{1}{2}∠BDE = 25°.$
∴∠2 = ∠ADE = 25°.
∵FE⊥AF,
∴∠F = 90°.由(1),得 AD//EF,
∴∠BAD = ∠F = 90°.
∴∠BAC = ∠BAD - ∠2 = 90°- 25° = 65°
∵∠1 = ∠BDE,
∴AC//DE.
∴∠2 = ∠ADE.
∵∠2 + ∠3 = 180°,
∴∠3 + ∠ADE = 180°.
∴AD//EF
(2)
∵∠1 = ∠BDE,∠1 = 50°,
∴∠BDE = 50°.
∵DA 平分∠BDE,
∴$∠ADE = \frac{1}{2}∠BDE = 25°.$
∴∠2 = ∠ADE = 25°.
∵FE⊥AF,
∴∠F = 90°.由(1),得 AD//EF,
∴∠BAD = ∠F = 90°.
∴∠BAC = ∠BAD - ∠2 = 90°- 25° = 65°
12. 如图,在三角形$ABC$中,点$D$,$E$分别在$AB$,$AC$上,$EF$交$DC$于点$F$,$∠3 + ∠2 = 180^{\circ}$,$∠1 = ∠B$.
(1)试说明:$DE // BC$;
(2)若$DE$平分$∠ADC$,$∠3 = 3∠B$,求$∠2$的度数.

(1)试说明:$DE // BC$;
(2)若$DE$平分$∠ADC$,$∠3 = 3∠B$,求$∠2$的度数.
答案:12.(1)
∵∠DFE + ∠2 = 180°,∠3 + ∠2 = 180°,
∴∠DFE = ∠3.
∴BD//EF.
∴∠1 = ∠ADE.
∵∠1 = ∠B,
∴∠ADE = ∠B.
∴DE//BC
(2)由(1),知∠ADE = ∠B,BD//EF,
∴∠2 = ∠ADC.
∵DE 平分∠ADC,
∴∠ADC = 2∠ADE = 2∠B.
∵∠3 + ∠ADC = 180°,∠3 = 3∠B,
∴3∠B + 2∠B = 180°,解得∠B = 36°.
∴∠ADC = 72°.
∴∠2 = 72°
∵∠DFE + ∠2 = 180°,∠3 + ∠2 = 180°,
∴∠DFE = ∠3.
∴BD//EF.
∴∠1 = ∠ADE.
∵∠1 = ∠B,
∴∠ADE = ∠B.
∴DE//BC
(2)由(1),知∠ADE = ∠B,BD//EF,
∴∠2 = ∠ADC.
∵DE 平分∠ADC,
∴∠ADC = 2∠ADE = 2∠B.
∵∠3 + ∠ADC = 180°,∠3 = 3∠B,
∴3∠B + 2∠B = 180°,解得∠B = 36°.
∴∠ADC = 72°.
∴∠2 = 72°