17. (6 分)解方程组:
(1)$\begin{cases}x + y = 4,\\2x - y = 5;\end{cases}$
(2)$\begin{cases}\frac{x}{3} - \frac{y + 2}{4} = 2,\\4x - y = 2.\end{cases}$
(1)$\begin{cases}x + y = 4,\\2x - y = 5;\end{cases}$
(2)$\begin{cases}\frac{x}{3} - \frac{y + 2}{4} = 2,\\4x - y = 2.\end{cases}$
答案:17.(1)$\begin{cases}x = 3,\\y = 1\end{cases}$ (2)$\begin{cases}x = -3,\\y = -14\end{cases}$
解析:
(1)解:$\begin{cases}x + y = 4,①\\2x - y = 5,②\end{cases}$
①+②得:$3x=9$,解得$x=3$,
将$x=3$代入①得:$3 + y=4$,解得$y=1$,
$\therefore\begin{cases}x = 3,\\y = 1\end{cases}$
(2)解:$\begin{cases}\frac{x}{3} - \frac{y + 2}{4} = 2,①\\4x - y = 2,②\end{cases}$
由①得:$4x - 3(y + 2)=24$,即$4x - 3y=30,③$
②-③得:$2y=-28$,解得$y=-14$,
将$y=-14$代入②得:$4x - (-14)=2$,解得$x=-3$,
$\therefore\begin{cases}x = -3,\\y = -14\end{cases}$
①+②得:$3x=9$,解得$x=3$,
将$x=3$代入①得:$3 + y=4$,解得$y=1$,
$\therefore\begin{cases}x = 3,\\y = 1\end{cases}$
(2)解:$\begin{cases}\frac{x}{3} - \frac{y + 2}{4} = 2,①\\4x - y = 2,②\end{cases}$
由①得:$4x - 3(y + 2)=24$,即$4x - 3y=30,③$
②-③得:$2y=-28$,解得$y=-14$,
将$y=-14$代入②得:$4x - (-14)=2$,解得$x=-3$,
$\therefore\begin{cases}x = -3,\\y = -14\end{cases}$
18. (6 分)已知关于$x$,$y$的方程组$\begin{cases}x + 2y = k + 7,\\3x + 5y = 4k + 18\end{cases}$的解也是方程$2x + 3y = 11$的解,求$k$的值。
答案:18.对于方程组$\begin{cases}x + 2y = k + 7①,\\3x + 5y = 4k + 18②.\end{cases}$
由② - ①,得$2x + 3y = 3k + 11$.$\because 2x + 3y = 11$,$\therefore 3k + 11 = 11$,解得$k = 0$
由② - ①,得$2x + 3y = 3k + 11$.$\because 2x + 3y = 11$,$\therefore 3k + 11 = 11$,解得$k = 0$
19. (8 分)我们把关于$x$,$y$的二元一次方程$ax + by + c = 0$的系数$a$,$b$,$c$称为该方程的伴随数,记作$(a,b,c)$。例如:二元一次方程$5x - y + 3 = 0$的伴随数是$(5,-1,3)$。
(1)二元一次方程$3x + 2y = 1$的伴随数是
(2)已知关于$x$,$y$的二元一次方程的伴随数是$(3,m,n)$,且$\begin{cases}x = 2,\\y = - 1,\end{cases}$$\begin{cases}x = - 2,\\y = 2\end{cases}$是该方程的两个解,求$m$,$n$的值。
(1)二元一次方程$3x + 2y = 1$的伴随数是
(3,2, -1)
;(2)已知关于$x$,$y$的二元一次方程的伴随数是$(3,m,n)$,且$\begin{cases}x = 2,\\y = - 1,\end{cases}$$\begin{cases}x = - 2,\\y = 2\end{cases}$是该方程的两个解,求$m$,$n$的值。
答案:19.(1)$(3,2, -1)$ (2)$\because$关于$x$,$y$的二元一次方程的伴随数是$(3,m,n)$,$\therefore$原方程为$3x + my + n = 0$.$\because\begin{cases}x = -2,\\y = 2\end{cases}$是该方程的两个解,$\therefore\begin{cases}6 - m + n = 0,\\-6 + 2m + n = 0.\end{cases}$解得$\begin{cases}m = 4,\ = -2\end{cases}$
20. (8 分)已知 A 地至 B 地的航线长为 9750 km,一架飞机从 A 地顺风飞往 B 地需 12.5 h,它逆风飞行同样的航线需 13 h,求飞机无风时的平均速度与风速。
答案:20.设飞机无风时的平均速度为$x$ km/h,风速为$y$ km/h.由题意,得$\begin{cases}12.5(x + y) = 9750,\\13(x - y) = 9750.\end{cases}$解得$\begin{cases}x = 765,\\y = 15.\end{cases}$答:飞机无风时的平均速度为$765$ km/h,风速为$15$ km/h