零五网 全部参考答案 通城学典课时作业本答案 2026年通城学典课时作业本八年级数学下册人教版南通专版 第11页解析答案
8. 若$a = \sqrt{2}$,$b = \sqrt{7}$,则$\sqrt{\dfrac{14a^{2}}{b^{2}}}$的值为(
A
)

A.$2$
B.$4$
C.$\sqrt{7}$
D.$\sqrt{2}$
答案:8.A
解析:
当$a = \sqrt{2}$,$b = \sqrt{7}$时,
$\begin{aligned}\sqrt{\dfrac{14a^{2}}{b^{2}}}&=\dfrac{\sqrt{14} · a}{b}\\&=\dfrac{\sqrt{14} × \sqrt{2}}{\sqrt{7}}\\&=\dfrac{\sqrt{28}}{\sqrt{7}}\\&=\sqrt{\dfrac{28}{7}}\\&=\sqrt{4}\\&=2\end{aligned}$
A
9. 下列各式中,计算正确的是(
C
)

A.$\dfrac{\sqrt{48}}{\sqrt{3}} = 16$
B.$\sqrt{\dfrac{3}{11}} ÷ \sqrt{3\dfrac{2}{3}} = 1$
C.$\dfrac{3\sqrt{6}}{6\sqrt{3}} = \dfrac{\sqrt{2}}{2}$
D.$\dfrac{\sqrt{54a^{2}b}}{\sqrt{6a}} = 9\sqrt{ab}$
答案:9.C
解析:
A.$\dfrac{\sqrt{48}}{\sqrt{3}}=\sqrt{\dfrac{48}{3}}=\sqrt{16}=4$,错误;
B.$\sqrt{\dfrac{3}{11}} ÷ \sqrt{3\dfrac{2}{3}}=\sqrt{\dfrac{3}{11}÷\dfrac{11}{3}}=\sqrt{\dfrac{9}{121}}=\dfrac{3}{11}$,错误;
C.$\dfrac{3\sqrt{6}}{6\sqrt{3}}=\dfrac{3}{6}×\sqrt{\dfrac{6}{3}}=\dfrac{1}{2}×\sqrt{2}=\dfrac{\sqrt{2}}{2}$,正确;
D.$\dfrac{\sqrt{54a^{2}b}}{\sqrt{6a}}=\sqrt{\dfrac{54a^{2}b}{6a}}=\sqrt{9ab}=3\sqrt{ab}$,错误。
答案:C
10. 计算$\sqrt{15} ÷ 4\sqrt{3} × \sqrt{\dfrac{6}{5}}$的结果是(
C
)

A.$1$
B.$\dfrac{3}{4}$
C.$\dfrac{\sqrt{6}}{4}$
D.$\dfrac{3}{2}$
答案:10.C
解析:
$\begin{aligned}\sqrt{15} ÷ 4\sqrt{3} × \sqrt{\dfrac{6}{5}}&=\dfrac{\sqrt{15}}{4\sqrt{3}} × \sqrt{\dfrac{6}{5}}\\&=\dfrac{1}{4} × \sqrt{\dfrac{15}{3} × \dfrac{6}{5}}\\&=\dfrac{1}{4} × \sqrt{5 × \dfrac{6}{5}}\\&=\dfrac{1}{4} × \sqrt{6}\\&=\dfrac{\sqrt{6}}{4}\end{aligned}$
C
11. (教材变式)化简:
(1)$\sqrt{\dfrac{5}{81}} =$
$\frac{\sqrt{5}}{9}$

(2)$\sqrt{\dfrac{b^{3}}{a^{4}}} =$
$\frac{b}{a^2}\sqrt{b}$

(3)$\sqrt{\dfrac{49n}{36m^{2}}} =$
$\frac{7}{6m}\sqrt{n}$
.
答案:11.(1)$\frac{\sqrt{5}}{9}$ (2)$\frac{b}{a^2}\sqrt{b}$ (3)$\frac{7}{6m}\sqrt{n}$
12. (教材变式)现有一个体积为$120\sqrt{3}\mathrm{ cm}^{3}$的长方体,它的高为$2\sqrt{15}\mathrm{ cm}$,长为$3\sqrt{10}\mathrm{ cm}$,那么这个长方体的宽为
$2\sqrt{2}$
$\mathrm{cm}$.
答案:12.$2\sqrt{2}$
解析:
设长方体的宽为$x\ \mathrm{cm}$。
长方体体积公式为$V = 长×宽×高$,已知体积$V = 120\sqrt{3}\ \mathrm{cm}^3$,高为$2\sqrt{15}\ \mathrm{cm}$,长为$3\sqrt{10}\ \mathrm{cm}$,则:
$3\sqrt{10} × x × 2\sqrt{15} = 120\sqrt{3}$
化简左边:
$3\sqrt{10} × 2\sqrt{15} × x = 6\sqrt{10×15} × x = 6\sqrt{150} × x = 6×5\sqrt{6} × x = 30\sqrt{6}x$
则方程为:
$30\sqrt{6}x = 120\sqrt{3}$
解得:
$x = \frac{120\sqrt{3}}{30\sqrt{6}} = \frac{4\sqrt{3}}{\sqrt{6}} = \frac{4\sqrt{3}×\sqrt{6}}{\sqrt{6}×\sqrt{6}} = \frac{4\sqrt{18}}{6} = \frac{4×3\sqrt{2}}{6} = 2\sqrt{2}$
$2\sqrt{2}$
13. (教材变式)计算:
(1)$\dfrac{\sqrt{105}}{\sqrt{3}}$;
(2)$\sqrt{\dfrac{9}{15}} ÷ \sqrt{\dfrac{6}{35}}$;
(3)$\dfrac{\sqrt{25a^{3}b^{2}}}{\sqrt{16ab}}$;
(4)$\dfrac{\sqrt{15} × \sqrt{80}}{4\sqrt{12}}$.
答案:13.(1)$\sqrt{35}$ (2)$\frac{\sqrt{14}}{2}$ (3)$\frac{5a}{4}\sqrt{b}$ (4)$\frac{5}{2}$
解析:
(1)$\dfrac{\sqrt{105}}{\sqrt{3}}=\sqrt{\dfrac{105}{3}}=\sqrt{35}$;
(2)$\sqrt{\dfrac{9}{15}} ÷ \sqrt{\dfrac{6}{35}}=\sqrt{\dfrac{9}{15}÷\dfrac{6}{35}}=\sqrt{\dfrac{9}{15}×\dfrac{35}{6}}=\sqrt{\dfrac{21}{6}}=\sqrt{\dfrac{7}{2}}=\dfrac{\sqrt{14}}{2}$;
(3)$\dfrac{\sqrt{25a^{3}b^{2}}}{\sqrt{16ab}}=\sqrt{\dfrac{25a^{3}b^{2}}{16ab}}=\sqrt{\dfrac{25a^{2}b}{16}}=\dfrac{5a}{4}\sqrt{b}$;
(4)$\dfrac{\sqrt{15} × \sqrt{80}}{4\sqrt{12}}=\dfrac{\sqrt{15×80}}{4\sqrt{12}}=\dfrac{\sqrt{1200}}{4\sqrt{12}}=\dfrac{20\sqrt{3}}{4×2\sqrt{3}}=\dfrac{20\sqrt{3}}{8\sqrt{3}}=\dfrac{5}{2}$.
14. 某零件设计图纸上有一个直角三角形,它的面积为$10\sqrt{14}\mathrm{ cm}^{2}$,其中一条直角边的长为$5\sqrt{2}\mathrm{ cm}$,求另一条直角边的长.
答案:14.设另一条直角边的长为$x$cm($x>0$)。由题意,得$5\sqrt{2}x×\frac{1}{2}=10\sqrt{14}$,解得$x=4\sqrt{7}$。$\therefore$另一条直角边的长为$4\sqrt{7}$cm
15. 已知$x$,$y$为实数,且$y = \sqrt{2x - 6} + \sqrt{3 - x} + 1$,求$x\sqrt{2x} ÷ \sqrt{\dfrac{x}{y}} + \dfrac{\sqrt{x^{2} + 2xy + y^{2}}}{\sqrt{x^{2} - 2xy + y^{2}}}$的值.
答案:15.由题意,得$\begin{cases}2x - 6\geq0,\\3 - x\geq0,\end{cases}$解得$x=3$。$\therefore y=1$。$\therefore$原式=$x\sqrt{2x÷\frac{x}{y}}+\frac{\sqrt{(x + y)^2}}{\sqrt{(x - y)^2}}=x\sqrt{2y}+\frac{x + y}{x - y}=3\sqrt{2}+2$
上一页 下一页