1. 能使等式$\sqrt{\dfrac{x}{x - 2}} = \dfrac{\sqrt{x}}{\sqrt{x - 2}}$成立的$x$的取值范围是(
A.$x \neq 2$
B.$x \geqslant 0$
C.$x > 2$
D.$x \geqslant 2$
C
)A.$x \neq 2$
B.$x \geqslant 0$
C.$x > 2$
D.$x \geqslant 2$
答案:1.C
解析:
要使等式$\sqrt{\dfrac{x}{x - 2}} = \dfrac{\sqrt{x}}{\sqrt{x - 2}}$成立,需满足:
1. 分子根号下非负:$x \geq 0$;
2. 分母根号下非负且分母不为零:$x - 2 > 0$,即$x > 2$;
3. 左边分式有意义:$\dfrac{x}{x - 2} \geq 0$,结合$x > 2$,此条件自然满足。
综上,$x$的取值范围是$x > 2$。
C
1. 分子根号下非负:$x \geq 0$;
2. 分母根号下非负且分母不为零:$x - 2 > 0$,即$x > 2$;
3. 左边分式有意义:$\dfrac{x}{x - 2} \geq 0$,结合$x > 2$,此条件自然满足。
综上,$x$的取值范围是$x > 2$。
C
2. 化简$\sqrt{75} ÷ \sqrt{3}$正确的是(
A.$2\sqrt{5}$
B.$\sqrt{5}$
C.$\sqrt{15}$
D.$5$
D
)A.$2\sqrt{5}$
B.$\sqrt{5}$
C.$\sqrt{15}$
D.$5$
答案:2.D
解析:
$\sqrt{75} ÷ \sqrt{3} = \sqrt{75 ÷ 3} = \sqrt{25} = 5$,答案选D。
3. 下列各式计算正确的是(
A.$\sqrt{24} ÷ \sqrt{6} = 4$
B.$\sqrt{54} ÷ \sqrt{9} = \sqrt{6}$
C.$\sqrt{30} ÷ \sqrt{6} = 5$
D.$\sqrt{\dfrac{1}{7}} ÷ \sqrt{\dfrac{1}{49}} = 7$
B
)A.$\sqrt{24} ÷ \sqrt{6} = 4$
B.$\sqrt{54} ÷ \sqrt{9} = \sqrt{6}$
C.$\sqrt{30} ÷ \sqrt{6} = 5$
D.$\sqrt{\dfrac{1}{7}} ÷ \sqrt{\dfrac{1}{49}} = 7$
答案:3.B
解析:
A.$\sqrt{24} ÷ \sqrt{6} = \sqrt{24÷6}=\sqrt{4}=2$,故A错误;
B.$\sqrt{54} ÷ \sqrt{9} = \sqrt{54÷9}=\sqrt{6}$,故B正确;
C.$\sqrt{30} ÷ \sqrt{6} = \sqrt{30÷6}=\sqrt{5}$,故C错误;
D.$\sqrt{\dfrac{1}{7}} ÷ \sqrt{\dfrac{1}{49}} = \sqrt{\dfrac{1}{7}÷\dfrac{1}{49}}=\sqrt{7}$,故D错误。
答案:B
B.$\sqrt{54} ÷ \sqrt{9} = \sqrt{54÷9}=\sqrt{6}$,故B正确;
C.$\sqrt{30} ÷ \sqrt{6} = \sqrt{30÷6}=\sqrt{5}$,故C错误;
D.$\sqrt{\dfrac{1}{7}} ÷ \sqrt{\dfrac{1}{49}} = \sqrt{\dfrac{1}{7}÷\dfrac{1}{49}}=\sqrt{7}$,故D错误。
答案:B
4. (教材变式)计算:
(1)$\dfrac{\sqrt{12}}{\sqrt{2}} =$
(2)$\dfrac{\sqrt{96}}{\sqrt{6}} =$
(3)$\sqrt{1\dfrac{1}{3}} ÷ \sqrt{\dfrac{7}{3}} =$
(4)$\sqrt{3\dfrac{1}{5}} ÷ \sqrt{1\dfrac{3}{5}} =$
(1)$\dfrac{\sqrt{12}}{\sqrt{2}} =$
$\sqrt{6}$
;(2)$\dfrac{\sqrt{96}}{\sqrt{6}} =$
$4$
;(3)$\sqrt{1\dfrac{1}{3}} ÷ \sqrt{\dfrac{7}{3}} =$
$\frac{2\sqrt{7}}{7}$
;(4)$\sqrt{3\dfrac{1}{5}} ÷ \sqrt{1\dfrac{3}{5}} =$
$\sqrt{2}$
.答案:4.(1)$\sqrt{6}$ (2)$4$ (3)$\frac{2\sqrt{7}}{7}$ (4)$\sqrt{2}$
5. (1)方程$\sqrt{3}x = \sqrt{\dfrac{1}{3}}$的解为
(2)不等式$2\sqrt{2}x - \sqrt{56} > 0$的解集为
$x=\frac{1}{3}$
;(2)不等式$2\sqrt{2}x - \sqrt{56} > 0$的解集为
$x>\sqrt{7}$
.答案:5.(1)$x=\frac{1}{3}$ (2)$x>\sqrt{7}$
6. (教材变式)计算:
(1)$\sqrt{48} ÷ ( - \sqrt{3})$;
(2)$\dfrac{\sqrt{90}}{\sqrt{5}}$;
(3)$ - \sqrt{90} ÷ \sqrt{3\dfrac{3}{5}}$;
(4)$\sqrt{\dfrac{ab}{6}} ÷ \sqrt{\dfrac{b}{24a^{3}}}$.
(1)$\sqrt{48} ÷ ( - \sqrt{3})$;
(2)$\dfrac{\sqrt{90}}{\sqrt{5}}$;
(3)$ - \sqrt{90} ÷ \sqrt{3\dfrac{3}{5}}$;
(4)$\sqrt{\dfrac{ab}{6}} ÷ \sqrt{\dfrac{b}{24a^{3}}}$.
答案:6.(1)$-4$ (2)$3\sqrt{2}$ (3)$-5$ (4)$2a^2$
解析:
(1)$\sqrt{48} ÷ ( - \sqrt{3}) = -\sqrt{48÷3} = -\sqrt{16} = -4$;
(2)$\dfrac{\sqrt{90}}{\sqrt{5}} = \sqrt{\dfrac{90}{5}} = \sqrt{18} = 3\sqrt{2}$;
(3)$- \sqrt{90} ÷ \sqrt{3\dfrac{3}{5}} = -\sqrt{90÷\dfrac{18}{5}} = -\sqrt{90×\dfrac{5}{18}} = -\sqrt{25} = -5$;
(4)$\sqrt{\dfrac{ab}{6}} ÷ \sqrt{\dfrac{b}{24a^{3}}} = \sqrt{\dfrac{ab}{6}÷\dfrac{b}{24a^{3}}} = \sqrt{\dfrac{ab}{6}×\dfrac{24a^{3}}{b}} = \sqrt{4a^{4}} = 2a^{2}$
(2)$\dfrac{\sqrt{90}}{\sqrt{5}} = \sqrt{\dfrac{90}{5}} = \sqrt{18} = 3\sqrt{2}$;
(3)$- \sqrt{90} ÷ \sqrt{3\dfrac{3}{5}} = -\sqrt{90÷\dfrac{18}{5}} = -\sqrt{90×\dfrac{5}{18}} = -\sqrt{25} = -5$;
(4)$\sqrt{\dfrac{ab}{6}} ÷ \sqrt{\dfrac{b}{24a^{3}}} = \sqrt{\dfrac{ab}{6}÷\dfrac{b}{24a^{3}}} = \sqrt{\dfrac{ab}{6}×\dfrac{24a^{3}}{b}} = \sqrt{4a^{4}} = 2a^{2}$
7. (教材变式)
(1)平行四边形的面积为$S$,底边长为$a$,底边上的高为$h$,已知$S = 6\sqrt{5}$,$h = \sqrt{30}$,求$a$的值;
(2)一个三角形的面积$S = 3\sqrt{6}$,底边$a$的长为$\sqrt{3}$,求底边$a$上的高$h$.
(1)平行四边形的面积为$S$,底边长为$a$,底边上的高为$h$,已知$S = 6\sqrt{5}$,$h = \sqrt{30}$,求$a$的值;
(2)一个三角形的面积$S = 3\sqrt{6}$,底边$a$的长为$\sqrt{3}$,求底边$a$上的高$h$.
答案:7.(1)$a=6\sqrt{5}÷\sqrt{30}=\sqrt{6}$ (2)$h=\frac{2×3\sqrt{6}}{\sqrt{3}}=6\sqrt{2}$
解析:
(1)$a = S ÷ h = 6\sqrt{5} ÷ \sqrt{30} = \sqrt{6}$
(2)$h = \frac{2S}{a} = \frac{2 × 3\sqrt{6}}{\sqrt{3}} = 6\sqrt{2}$
(2)$h = \frac{2S}{a} = \frac{2 × 3\sqrt{6}}{\sqrt{3}} = 6\sqrt{2}$