1. 已知 $x$,$y$ 为实数,且 $y = \sqrt{x - 24} + \sqrt{24 - x} + 4$,则 $\sqrt{xy}$ 的值为
$4\sqrt{6}$
。答案:1.$4\sqrt{6}$
解析:
要使二次根式有意义,则被开方数为非负数,所以:
$\begin{cases}x - 24 \geq 0 \\24 - x \geq 0\end{cases}$
解得 $x = 24$。
将 $x = 24$ 代入 $y = \sqrt{x - 24} + \sqrt{24 - x} + 4$,得 $y = 0 + 0 + 4 = 4$。
则 $xy = 24 × 4 = 96$,所以 $\sqrt{xy} = \sqrt{96} = 4\sqrt{6}$。
$4\sqrt{6}$
$\begin{cases}x - 24 \geq 0 \\24 - x \geq 0\end{cases}$
解得 $x = 24$。
将 $x = 24$ 代入 $y = \sqrt{x - 24} + \sqrt{24 - x} + 4$,得 $y = 0 + 0 + 4 = 4$。
则 $xy = 24 × 4 = 96$,所以 $\sqrt{xy} = \sqrt{96} = 4\sqrt{6}$。
$4\sqrt{6}$
2. 若 $\sqrt{x^{2} - 2x + 1} + 9y^{2} + 6y + 1 = 0$,则 $xy + \frac{y}{x} =$
$-\frac{2}{3}$
。答案:2.$-\frac{2}{3}$
解析:
$\sqrt{x^{2} - 2x + 1} + 9y^{2} + 6y + 1 = 0$可化为$\sqrt{(x - 1)^{2}} + (3y + 1)^{2} = 0$,即$|x - 1| + (3y + 1)^{2} = 0$。因为绝对值和平方数均为非负数,所以$x - 1 = 0$,$3y + 1 = 0$,解得$x = 1$,$y = -\frac{1}{3}$。则$xy + \frac{y}{x} = 1×(-\frac{1}{3}) + \frac{-\frac{1}{3}}{1} = -\frac{1}{3} - \frac{1}{3} = -\frac{2}{3}$。$-\frac{2}{3}$
3. 实数 $a$,$b$,$c$ 在数轴上的对应点的位置如图所示,则化简 $\sqrt{a^{2}} - |a - c| + \sqrt{(c - b)^{2}} - | - b|$ 的结果为

$-2a$
。答案:3.$-2a$
解析:
解:由数轴可知$c < a < 0 < b$,且$|c| > |b| > |a|$。
$\sqrt{a^{2}} - |a - c| + \sqrt{(c - b)^{2}} - | - b|$
$=|a| - |a - c| + |c - b| - |b|$
$=-a - (a - c) + (b - c) - b$
$=-a - a + c + b - c - b$
$=-2a$
$-2a$
$\sqrt{a^{2}} - |a - c| + \sqrt{(c - b)^{2}} - | - b|$
$=|a| - |a - c| + |c - b| - |b|$
$=-a - (a - c) + (b - c) - b$
$=-a - a + c + b - c - b$
$=-2a$
$-2a$
4. 先化简,再求值:
(1)$(1 - \frac{1}{x + 2}) ÷ \frac{x^{2} - 1}{x^{2} + 4x + 4}$,其中 $x = \sqrt{3} + 1$;
(2)$(a - b)^{2} + 2a(a + b) + (a + 2b)(a - 2b)$,其中 $a = \sqrt{2}$,$b = \sqrt{3}$。
(1)$(1 - \frac{1}{x + 2}) ÷ \frac{x^{2} - 1}{x^{2} + 4x + 4}$,其中 $x = \sqrt{3} + 1$;
(2)$(a - b)^{2} + 2a(a + b) + (a + 2b)(a - 2b)$,其中 $a = \sqrt{2}$,$b = \sqrt{3}$。
答案:4.(1)原式$=\frac{x + 2}{x - 1}$.当$x = \sqrt{3} + 1$时,原式$= 1 + \sqrt{3}$ (2)原式$= 4a^{2} - 3b^{2}$.当$a = \sqrt{2},b = \sqrt{3}$时,原式$= - 1$
解析:
(1)解:原式$=(\frac{x+2}{x+2}-\frac{1}{x+2})÷\frac{(x+1)(x-1)}{(x+2)^2}$
$=\frac{x+1}{x+2}·\frac{(x+2)^2}{(x+1)(x-1)}$
$=\frac{x+2}{x-1}$
当$x = \sqrt{3} + 1$时,原式$=\frac{\sqrt{3}+1+2}{\sqrt{3}+1-1}=\frac{\sqrt{3}+3}{\sqrt{3}}=1+\sqrt{3}$
(2)解:原式$=a^2 - 2ab + b^2 + 2a^2 + 2ab + a^2 - 4b^2$
$=(a^2 + 2a^2 + a^2)+(-2ab + 2ab)+(b^2 - 4b^2)$
$=4a^2 - 3b^2$
当$a = \sqrt{2}$,$b = \sqrt{3}$时,原式$=4×(\sqrt{2})^2 - 3×(\sqrt{3})^2=4×2 - 3×3=8 - 9=-1$
$=\frac{x+1}{x+2}·\frac{(x+2)^2}{(x+1)(x-1)}$
$=\frac{x+2}{x-1}$
当$x = \sqrt{3} + 1$时,原式$=\frac{\sqrt{3}+1+2}{\sqrt{3}+1-1}=\frac{\sqrt{3}+3}{\sqrt{3}}=1+\sqrt{3}$
(2)解:原式$=a^2 - 2ab + b^2 + 2a^2 + 2ab + a^2 - 4b^2$
$=(a^2 + 2a^2 + a^2)+(-2ab + 2ab)+(b^2 - 4b^2)$
$=4a^2 - 3b^2$
当$a = \sqrt{2}$,$b = \sqrt{3}$时,原式$=4×(\sqrt{2})^2 - 3×(\sqrt{3})^2=4×2 - 3×3=8 - 9=-1$
5. 若 $a = \sqrt{2} - 1$,$b = \sqrt{2} + 1$,则代数式 $a^{3}b - ab^{3}$ 的值是(
A.$4\sqrt{2}$
B.$3$
C.$-3$
D.$-4\sqrt{2}$
D
)A.$4\sqrt{2}$
B.$3$
C.$-3$
D.$-4\sqrt{2}$
答案:5.D
解析:
$a^{3}b - ab^{3} = ab(a^{2}-b^{2}) = ab(a+b)(a - b)$,
$a = \sqrt{2} - 1$,$b = \sqrt{2} + 1$,
$ab = (\sqrt{2} - 1)(\sqrt{2} + 1) = (\sqrt{2})^{2}-1^{2}=2 - 1 = 1$,
$a + b = (\sqrt{2} - 1)+(\sqrt{2} + 1)=2\sqrt{2}$,
$a - b = (\sqrt{2} - 1)-(\sqrt{2} + 1)=\sqrt{2}-1-\sqrt{2}-1=-2$,
原式$=1×2\sqrt{2}×(-2)=-4\sqrt{2}$。
D
$a = \sqrt{2} - 1$,$b = \sqrt{2} + 1$,
$ab = (\sqrt{2} - 1)(\sqrt{2} + 1) = (\sqrt{2})^{2}-1^{2}=2 - 1 = 1$,
$a + b = (\sqrt{2} - 1)+(\sqrt{2} + 1)=2\sqrt{2}$,
$a - b = (\sqrt{2} - 1)-(\sqrt{2} + 1)=\sqrt{2}-1-\sqrt{2}-1=-2$,
原式$=1×2\sqrt{2}×(-2)=-4\sqrt{2}$。
D
6. 若 $x = \sqrt{7} - 4$,则代数式 $x^{2} + 8x - 16$ 的值为
$-25$
。答案:6.$-25$
解析:
解:因为$x = \sqrt{7} - 4$,所以$x + 4 = \sqrt{7}$。
两边平方得$(x + 4)^2 = (\sqrt{7})^2$,即$x^2 + 8x + 16 = 7$。
移项可得$x^2 + 8x = 7 - 16 = -9$。
则$x^2 + 8x - 16 = -9 - 16 = -25$。
$-25$
两边平方得$(x + 4)^2 = (\sqrt{7})^2$,即$x^2 + 8x + 16 = 7$。
移项可得$x^2 + 8x = 7 - 16 = -9$。
则$x^2 + 8x - 16 = -9 - 16 = -25$。
$-25$
7. 已知 $x = 1 - \sqrt{5}$,求代数式 $(6 + 2\sqrt{5})x^{2} + (1 + \sqrt{5})x + \sqrt{5}$ 的值。
答案:7.$\because 6 + 2\sqrt{5} = (1 + \sqrt{5})^{2},\therefore$原式$=(1 + \sqrt{5})^{2}x^{2} + (1 + \sqrt{5})x +$
$\sqrt{5} = [(1 + \sqrt{5})x]^{2} + (1 + \sqrt{5})x + \sqrt{5}$.当$x = 1 - \sqrt{5}$时,原式$=$
$[(1 + \sqrt{5})(1 - \sqrt{5})]^{2} + (1 + \sqrt{5})(1 - \sqrt{5}) + \sqrt{5} = 16 - 4 + \sqrt{5} =$
$12 + \sqrt{5}$
$\sqrt{5} = [(1 + \sqrt{5})x]^{2} + (1 + \sqrt{5})x + \sqrt{5}$.当$x = 1 - \sqrt{5}$时,原式$=$
$[(1 + \sqrt{5})(1 - \sqrt{5})]^{2} + (1 + \sqrt{5})(1 - \sqrt{5}) + \sqrt{5} = 16 - 4 + \sqrt{5} =$
$12 + \sqrt{5}$
8. 已知 $x = \frac{1}{5 - 2\sqrt{6}}$,$y = \frac{1}{5 + 2\sqrt{6}}$,求 $\frac{x}{y} + \frac{y}{x} - 4$ 的值。
答案:8.$\because x = \frac{1}{5 - 2\sqrt{6}} = 5 + 2\sqrt{6},y = \frac{1}{5 + 2\sqrt{6}} = 5 - 2\sqrt{6},\therefore x + y =$
$10,xy = 1.\therefore$原式$=\frac{x^{2} + y^{2}}{xy} - 4 = \frac{(x + y)^{2} - 2xy}{xy} - 4 =$
$\frac{10^{2} - 2 × 1}{1} - 4 = 94$
$10,xy = 1.\therefore$原式$=\frac{x^{2} + y^{2}}{xy} - 4 = \frac{(x + y)^{2} - 2xy}{xy} - 4 =$
$\frac{10^{2} - 2 × 1}{1} - 4 = 94$
9. 已知 $x + \frac{1}{x} = \sqrt{7}$,求 $\frac{x^{2}}{x^{4} + x^{2} + 1}$ 的值。
答案:9.$\because x + \frac{1}{x} = \sqrt{7},\therefore x \neq 0.\therefore\frac{x^{4} + x^{2} + 1}{x^{2}} = x^{2} + \frac{1}{x^{2}} + 1 =$
$(x + \frac{1}{x})^{2} - 1 = (\sqrt{7})^{2} - 1 = 6.\therefore$原式$=\frac{1}{6}$
$(x + \frac{1}{x})^{2} - 1 = (\sqrt{7})^{2} - 1 = 6.\therefore$原式$=\frac{1}{6}$