11. (1)已知$a - b + c = 5$,且$a^{2} - (b - c)^{2} = 20$,则$a + b - c$的值为
(2)如果$m^{2} = n + 5$,$n^{2} = m + 5$,且$m ≠ n$,那么$m + n$的值为
4
.(2)如果$m^{2} = n + 5$,$n^{2} = m + 5$,且$m ≠ n$,那么$m + n$的值为
-1
.答案:11. (1)4 解析:因为$a - b + c = 5$,且$a^{2} - (b - c)^{2} = [a + (b - c)]·[a - (b - c)] = 20$,所以$a + b - c = 4$.
(2)$-1$ 解析:因为$m^{2} = n + 5$,$n^{2} = m + 5$,且$m ≠ n$,即$m - n ≠ 0$,所以$m^{2} - n^{2} = n - m$,即$(m + n)(m - n) = -(m - n)$,所以$m + n = -1$.
(2)$-1$ 解析:因为$m^{2} = n + 5$,$n^{2} = m + 5$,且$m ≠ n$,即$m - n ≠ 0$,所以$m^{2} - n^{2} = n - m$,即$(m + n)(m - n) = -(m - n)$,所以$m + n = -1$.
12. (厦门中考)设$a = 19^{2}×918$,$b = 888^{2} - 30^{2}$,$c = 698^{2} - 220^{2}$,则数$a$,$b$,$c$按从小到大的顺序排列,结果是
a
<c
<b
.答案:12. $a$ $c$ $b$ 解析:$a = 19^{2}×918 = 361×918$,$b = 888^{2} - 30^{2} = (888 - 30)×(888 + 30) = 858×918$,$c = 698^{2} - 220^{2} = (698 + 220)×(698 - 220) = 918×478$,所以$a < c < b$.
解析:
$a = 19^{2} × 918 = 361 × 918$,$b = 888^{2} - 30^{2} = (888 - 30)(888 + 30) = 858 × 918$,$c = 698^{2} - 220^{2} = (698 + 220)(698 - 220) = 918 × 478$,因为$361 < 478 < 858$,所以$a < c < b$。
13. 先分解因式,再求值:已知$5x + y = 2$,$5y - 3x = 3$,求$3(x + 3y)^{2} - 12(2x - y)^{2}$的值.
答案:13. 原式$ = 3[(x + 3y)^{2} - 4(2x - y)^{2}] = 3[(x + 3y) + 2(2x - y)]·[(x + 3y) - 2(2x - y)] = 3(x + 3y + 4x - 2y)(x + 3y - 4x + 2y) = 3(5x + y)(-3x + 5y)$,当$5x + y = 2$,$5y - 3x = 3$时,原式$ = 3×2×3 = 18$.
14. (1)如图所示的圆形工件,大圆的半径$R$为$65.4mm$,四个小圆的半径$r$为$17.3mm$,求图中阴影部分的面积(结果保留$π$).

答案:14. (1)$S_{阴影} = S_{大圆} - 4S_{小圆} = πR^{2} - 4πr^{2} = π(R^{2} - 4r^{2}) = π(R + 2r)(R - 2r) = π(65.4 + 34.6)×(65.4 - 34.6) = 3080π$.
(2)小美利用暑假时间绣了两幅正方形的“十字绣”,她想在“十字绣”的四边镶上金边,于是将一条长$2.4m$的金边剪成两段,恰好可以用来镶两幅“十字绣”的边,而这两幅“十字绣”的面积相差$1200cm^{2}$,则这条金边剪成的两段分别有多长?
答案:(2)设较大正方形“十字绣”的周长为$x$ cm,则较小正方形“十字绣”的周长为$(240 - x)$ cm.根据题意,得$(\frac{x}{4})^{2} - (\frac{240 - x}{4})^{2} = 1200$,即$(\frac{x}{4} + \frac{240 - x}{4})(\frac{x}{4} - \frac{240 - x}{4}) = 1200$,解得$x = 160$.所以$240 - 160 = 80(cm)$.故这条金边剪成了长为160 cm和80 cm的两段.
15. 利用因式分解计算:
(1)$\frac{(2^{2} - 1)×(3^{2} - 1)×···×(2024^{2} - 1)×(2025^{2} - 1)}{1^{2}×2^{2}×3^{2}×···×2024^{2}×2025^{2}} =$
(2)$\frac{1^{2} - 2^{2}}{2 + 4} + \frac{3^{2} - 4^{2}}{6 + 8} + \frac{5^{2} - 6^{2}}{10 + 12} + ··· + \frac{1009^{2} - 1010^{2}}{2018 + 2020} + \frac{1011^{2} - 1012^{2}}{2022 + 2024} =$
(1)$\frac{(2^{2} - 1)×(3^{2} - 1)×···×(2024^{2} - 1)×(2025^{2} - 1)}{1^{2}×2^{2}×3^{2}×···×2024^{2}×2025^{2}} =$
$\frac{1013}{2025}$
;(2)$\frac{1^{2} - 2^{2}}{2 + 4} + \frac{3^{2} - 4^{2}}{6 + 8} + \frac{5^{2} - 6^{2}}{10 + 12} + ··· + \frac{1009^{2} - 1010^{2}}{2018 + 2020} + \frac{1011^{2} - 1012^{2}}{2022 + 2024} =$
-253
.答案:15. (1)$\frac{1013}{2025}$ 解析:原式$ = \frac{(2 + 1)(2 - 1)}{2^{2}}×\frac{(3 + 1)(3 - 1)}{3^{2}}×\frac{(4 + 1)(4 - 1)}{4^{2}}×···×\frac{(2024 + 1)(2024 - 1)}{2024^{2}}×\frac{(2025 + 1)(2025 - 1)}{2025^{2}} = \frac{1×3}{2^{2}}×\frac{2×4}{3^{2}}×\frac{3×5}{4^{2}}×···×\frac{2023×2025}{2024^{2}}×\frac{2024×2026}{2025^{2}} = \frac{1}{2}×\frac{2026}{2025} = \frac{1013}{2025}$.
(2)$-253$ 解析:$\frac{1^{2} - 2^{2}}{2 + 4} = \frac{(1 - 2)×(1 + 2)}{2×(1 + 2)} = -\frac{1}{2}$,同理$\frac{3^{2} - 4^{2}}{6 + 8} = -\frac{1}{2}$,$\frac{5^{2} - 6^{2}}{10 + 12} = -\frac{1}{2}$,$···$,$\frac{1009^{2} - 1010^{2}}{2018 + 2020} = -\frac{1}{2}$,$\frac{1011^{2} - 1012^{2}}{2022 + 2024} = -\frac{1}{2}$,所以原式$ = (-\frac{1}{2}) + (-\frac{1}{2}) + (-\frac{1}{2}) + ··· + (-\frac{1}{2}) + (-\frac{1}{2}) = (-\frac{1}{2})×506 = -253$.
(2)$-253$ 解析:$\frac{1^{2} - 2^{2}}{2 + 4} = \frac{(1 - 2)×(1 + 2)}{2×(1 + 2)} = -\frac{1}{2}$,同理$\frac{3^{2} - 4^{2}}{6 + 8} = -\frac{1}{2}$,$\frac{5^{2} - 6^{2}}{10 + 12} = -\frac{1}{2}$,$···$,$\frac{1009^{2} - 1010^{2}}{2018 + 2020} = -\frac{1}{2}$,$\frac{1011^{2} - 1012^{2}}{2022 + 2024} = -\frac{1}{2}$,所以原式$ = (-\frac{1}{2}) + (-\frac{1}{2}) + (-\frac{1}{2}) + ··· + (-\frac{1}{2}) + (-\frac{1}{2}) = (-\frac{1}{2})×506 = -253$.
16. 新题型 新定义 如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.
例如:$8 = 3^{2} - 1^{2}$,$16 = 5^{2} - 3^{2}$,$24 = 7^{2} - 5^{2}$,则$8$,$16$,$24$这三个数都是奇特数.
(1)填空:$40$
(2)设两个连续奇数是$2n - 1$和$2n + 1$(其中$n$取正整数),由这两个连续奇数构造的奇特数是$8$的倍数吗?为什么?
(3)如图所示,拼叠的正方形边长是从$1$开始的连续奇数,按此规律拼叠到正方形$ABCD$,其边长为$199$,求阴影部分的面积.
]
例如:$8 = 3^{2} - 1^{2}$,$16 = 5^{2} - 3^{2}$,$24 = 7^{2} - 5^{2}$,则$8$,$16$,$24$这三个数都是奇特数.
(1)填空:$40$
是
奇特数,$2020$不是
奇特数.(填“是”或者“不是”)(2)设两个连续奇数是$2n - 1$和$2n + 1$(其中$n$取正整数),由这两个连续奇数构造的奇特数是$8$的倍数吗?为什么?
(3)如图所示,拼叠的正方形边长是从$1$开始的连续奇数,按此规律拼叠到正方形$ABCD$,其边长为$199$,求阴影部分的面积.
答案:16. (1)是 不是 解析:因为$8 = 3^{2} - 1^{2}$,$16 = 5^{2} - 3^{2}$,$24 = 7^{2} - 5^{2}$,则8,16,24这三个数都是奇特数,所以奇特数是8的整数倍,即$8n$($n$是正整数).因为$40 = 8×5$,所以40是奇特数.因为$2020 = 4×505$,不是8的整数倍,所以2020不是奇特数.
(2)是.因为$(2n + 1)^{2} - (2n - 1)^{2} = 8n$,所以由这两个连续奇数构造的奇特数是8的倍数.
(3)$S_{阴影部分} = 199^{2} - 197^{2} + 195^{2} - 193^{2} + ··· + 7^{2} - 5^{2} + 3^{2} - 1^{2} = (199 + 197)×(199 - 197) + (195 + 193)×(195 - 193) + ··· + (7 + 5)×(7 - 5) + (3 + 1)×(3 - 1) = (199 + 197 + 195 + 193 + ··· + 3 + 1)×2 = \frac{(1 + 199)×100}{2}×2 = 20000$.
(2)是.因为$(2n + 1)^{2} - (2n - 1)^{2} = 8n$,所以由这两个连续奇数构造的奇特数是8的倍数.
(3)$S_{阴影部分} = 199^{2} - 197^{2} + 195^{2} - 193^{2} + ··· + 7^{2} - 5^{2} + 3^{2} - 1^{2} = (199 + 197)×(199 - 197) + (195 + 193)×(195 - 193) + ··· + (7 + 5)×(7 - 5) + (3 + 1)×(3 - 1) = (199 + 197 + 195 + 193 + ··· + 3 + 1)×2 = \frac{(1 + 199)×100}{2}×2 = 20000$.