12. (1)$a,b$满足$a(a+1)-(a^{2}+2b)=1$,求$a^{2}-4ab+4b^{2}-2a+4b$的值;
答案:12. (1)因为$a(a + 1) - (a^{2} + 2b) = 1$,所以$a - 2b = 1$.所以$a^{2} - 4ab + 4b^{2} - 2a + 4b = (a - 2b)^{2} - 2(a - 2b) = 1 - 2 = - 1$.
(2)已知$x^{2}-y^{2}=20$,求$[(x - y)^{2}+4xy][(x+y)^{2}-4xy]$的值.
答案:(2)因为$x^{2} - y^{2} = 20$,则$[(x - y)^{2} + 4xy][(x + y)^{2} - 4xy] = (x + y)^{2}(x - y)^{2} = [(x + y)(x - y)]^{2} = (x^{2} - y^{2})^{2} = 400$.
13. 原创题 (1)问题探究:已知$a,b$是实数,试说明:$a^{2}+b^{2}≥2ab$.
(2)
②已知$m,n$是实数,且$mn=2$,试求$3m^{2}+3n^{2}-1$的最小值.
(2)
结
论
应用:①已知$P=(a+b)^{2},Q=4ab$,试探究$P,Q$的大小关系;②已知$m,n$是实数,且$mn=2$,试求$3m^{2}+3n^{2}-1$的最小值.
答案:13. (1)因为$(a - b)^{2} ≥ 0$,所以$a^{2} - 2ab + b^{2} ≥ 0$,所以$a^{2} + b^{2} ≥ 2ab$.
(2)①因为$P = (a + b)^{2}$,$Q = 4ab$,所以$P - Q = (a + b)^{2} - 4ab = (a - b)^{2} ≥ 0$,所以$P ≥ Q$.
②因为$m$,$n$是实数,且$mn = 2$,所以$3m^{2} + 3n^{2} - 1 = 3(m^{2} + n^{2}) - 1 ≥ 3×2mn - 1 = 6mn - 1 = 12 - 1 = 11$.
故$3m^{2} + 3n^{2} - 1$的最小值是11.
(2)①因为$P = (a + b)^{2}$,$Q = 4ab$,所以$P - Q = (a + b)^{2} - 4ab = (a - b)^{2} ≥ 0$,所以$P ≥ Q$.
②因为$m$,$n$是实数,且$mn = 2$,所以$3m^{2} + 3n^{2} - 1 = 3(m^{2} + n^{2}) - 1 ≥ 3×2mn - 1 = 6mn - 1 = 12 - 1 = 11$.
故$3m^{2} + 3n^{2} - 1$的最小值是11.
14. 阅读下列材料:
我们把多项式$a^{2}+2ab+b^{2}$及$a^{2}-2ab+b^{2}$叫作完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫作配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大(小)值等.
例如:分解因式$x^{2}+2x - 3=(x^{2}+2x+1)-4=(x+1)^{2}-4=(x+1+2)(x+1 - 2)=(x+3)(x - 1)$.
再例如:求代数式$2x^{2}+4x - 6$的最小值.
$2x^{2}+4x - 6=2(x^{2}+2x - 3)=2(x+1)^{2}-8$,因为$(x+1)^{2}≥0$,所以当$x=-1$时,$2x^{2}+4x - 6$有最小值,最小值是$-8$.
阅读材料,用配方法解决下列问题:
(1)分解因式:
①$m^{2}-4m - 5=$
②$a^{2}+3a - 28=$
(2)①求多项式$-x^{2}+6x - 16$的最大值;
②若多项式$M=a^{2}+2b^{2}-2a+4b+2023$,试求$M$的最小值.
(3)①若$a=2023,b=2022,c=2021$,求$a^{2}+b^{2}+c^{2}-ab - bc - ac$的值;
②已知$a,b,c$是$△ ABC$的三边,且满足$a^{2}+b^{2}=10a+8b - 41$,求第三边$c$的取值范围.
]
我们把多项式$a^{2}+2ab+b^{2}$及$a^{2}-2ab+b^{2}$叫作完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫作配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大(小)值等.
例如:分解因式$x^{2}+2x - 3=(x^{2}+2x+1)-4=(x+1)^{2}-4=(x+1+2)(x+1 - 2)=(x+3)(x - 1)$.
再例如:求代数式$2x^{2}+4x - 6$的最小值.
$2x^{2}+4x - 6=2(x^{2}+2x - 3)=2(x+1)^{2}-8$,因为$(x+1)^{2}≥0$,所以当$x=-1$时,$2x^{2}+4x - 6$有最小值,最小值是$-8$.
阅读材料,用配方法解决下列问题:
(1)分解因式:
①$m^{2}-4m - 5=$
(m + 1)(m - 5)
;②$a^{2}+3a - 28=$
(a - 4)(a + 7)
.(2)①求多项式$-x^{2}+6x - 16$的最大值;
②若多项式$M=a^{2}+2b^{2}-2a+4b+2023$,试求$M$的最小值.
(3)①若$a=2023,b=2022,c=2021$,求$a^{2}+b^{2}+c^{2}-ab - bc - ac$的值;
②已知$a,b,c$是$△ ABC$的三边,且满足$a^{2}+b^{2}=10a+8b - 41$,求第三边$c$的取值范围.
]
答案:14. (1)①$(m + 1)(m - 5)$ 解析:$m^{2} - 4m - 5 = m^{2} - 4m + 4 - 9 = (m - 2)^{2} - 9 = (m - 2 + 3)(m - 2 - 3) = (m + 1)(m - 5)$.
②$(a - 4)(a + 7)$ 解析:$a^{2} + 3a - 28 = a^{2} + 3a + (\frac{3}{2})^{2} - (\frac{3}{2})^{2} - 28 = (a + \frac{3}{2})^{2} - \frac{121}{4} = (a + \frac{3}{2} - \frac{11}{2})(a + \frac{3}{2} + \frac{11}{2}) = (a - 4)(a + 7)$.
(2)①由题意,得$- x^{2} + 6x - 16 = - (x^{2} - 6x + 16) = - (x^{2} - 6x + 9 - 9 + 16) = - (x - 3)^{2} - 7$,因为$(x - 3)^{2} ≥ 0$,所以$- (x - 3)^{2} ≤ 0$,所以$- (x - 3)^{2} - 7 ≤ - 7$,所以当$x = 3$时,$- x^{2} + 6x - 16$的值最大,最大值为-7.
②$M = a^{2} + 2b^{2} - 2a + 4b + 2023 = (a^{2} - 2a + 1) + (2b^{2} + 4b + 2) + 2020 = (a - 1)^{2} + 2(b + 1)^{2} + 2020$,因为$(a - 1)^{2} ≥ 0$,$(b + 1)^{2} ≥ 0$,所以$M ≥ 2020$,所以$M$的最小值为2020.
(3)①因为$a = 2023$,$b = 2022$,$c = 2021$,所以$a^{2} + b^{2} + c^{2} - ab - bc - ac = \frac{1}{2}(a^{2} - 2ab + b^{2}) + \frac{1}{2}(a^{2} - 2ac + c^{2}) + \frac{1}{2}(b^{2} - 2bc + c^{2}) = \frac{1}{2}(a - b)^{2} + \frac{1}{2}(a - c)^{2} + \frac{1}{2}(b - c)^{2} = \frac{1}{2}×(2023 - 2022)^{2} + \frac{1}{2}×(2023 - 2021)^{2} + \frac{1}{2}×(2022 - 2021)^{2} = \frac{1}{2} + \frac{1}{2}×4 + \frac{1}{2} = 3$.
②因为$a^{2} + b^{2} = 10a + 8b - 41$,所以$a^{2} - 10a + 25 + b^{2} - 8b + 16 = 0$,所以$(a - 5)^{2} + (b - 4)^{2} = 0$.因为$(a - 5)^{2} ≥ 0$,$(b - 4)^{2} ≥ 0$,所以$a = 5$,$b = 4$.所以$1 < c < 9$.
②$(a - 4)(a + 7)$ 解析:$a^{2} + 3a - 28 = a^{2} + 3a + (\frac{3}{2})^{2} - (\frac{3}{2})^{2} - 28 = (a + \frac{3}{2})^{2} - \frac{121}{4} = (a + \frac{3}{2} - \frac{11}{2})(a + \frac{3}{2} + \frac{11}{2}) = (a - 4)(a + 7)$.
(2)①由题意,得$- x^{2} + 6x - 16 = - (x^{2} - 6x + 16) = - (x^{2} - 6x + 9 - 9 + 16) = - (x - 3)^{2} - 7$,因为$(x - 3)^{2} ≥ 0$,所以$- (x - 3)^{2} ≤ 0$,所以$- (x - 3)^{2} - 7 ≤ - 7$,所以当$x = 3$时,$- x^{2} + 6x - 16$的值最大,最大值为-7.
②$M = a^{2} + 2b^{2} - 2a + 4b + 2023 = (a^{2} - 2a + 1) + (2b^{2} + 4b + 2) + 2020 = (a - 1)^{2} + 2(b + 1)^{2} + 2020$,因为$(a - 1)^{2} ≥ 0$,$(b + 1)^{2} ≥ 0$,所以$M ≥ 2020$,所以$M$的最小值为2020.
(3)①因为$a = 2023$,$b = 2022$,$c = 2021$,所以$a^{2} + b^{2} + c^{2} - ab - bc - ac = \frac{1}{2}(a^{2} - 2ab + b^{2}) + \frac{1}{2}(a^{2} - 2ac + c^{2}) + \frac{1}{2}(b^{2} - 2bc + c^{2}) = \frac{1}{2}(a - b)^{2} + \frac{1}{2}(a - c)^{2} + \frac{1}{2}(b - c)^{2} = \frac{1}{2}×(2023 - 2022)^{2} + \frac{1}{2}×(2023 - 2021)^{2} + \frac{1}{2}×(2022 - 2021)^{2} = \frac{1}{2} + \frac{1}{2}×4 + \frac{1}{2} = 3$.
②因为$a^{2} + b^{2} = 10a + 8b - 41$,所以$a^{2} - 10a + 25 + b^{2} - 8b + 16 = 0$,所以$(a - 5)^{2} + (b - 4)^{2} = 0$.因为$(a - 5)^{2} ≥ 0$,$(b - 4)^{2} ≥ 0$,所以$a = 5$,$b = 4$.所以$1 < c < 9$.