1. 口算:
(1)$(ab^{2})^{3}=$; (2)$(3cd)^{2}=$;
(3)$(-2b^{2})^{3}=$; (4)$(-2b)^{4}=$;
(5)$-(3a^{2}b)^{2}=$; (6)$(-\frac {3}{2}a^{2}b)^{3}=$;
(7)$[2(a-b)^{2}]^{3}=$; (8)$[-2(a+b)]^{2}=$.
(1)$(ab^{2})^{3}=$; (2)$(3cd)^{2}=$;
(3)$(-2b^{2})^{3}=$; (4)$(-2b)^{4}=$;
(5)$-(3a^{2}b)^{2}=$; (6)$(-\frac {3}{2}a^{2}b)^{3}=$;
(7)$[2(a-b)^{2}]^{3}=$; (8)$[-2(a+b)]^{2}=$.
答案:1. (1)$a^{3}b^{6}$ (2)$9c^{2}d^{2}$ (3)$-8b^{6}$ (4)$16b^{4}$ (5)$-9a^{4}b^{2}$ (6)$-\dfrac{27}{8}a^{6}b^{3}$ (7)$8(a - b)^{6}$ (8)$4(a + b)^{2}$
2. 计算:
(1)$(-2a^{2}bc^{3})^{4}$; (2)$(-2xy^{2})^{6}+(-3x^{2}y^{4})^{3}$;
(3)$n· n^{2}· (-n)^{3}+(-3n^{2})^{3}$; (4)$(2x^{2})^{3}+x^{4}· x^{2}$;
(5)$(-3x^{3})^{2}-x^{2}· x^{4}-(x^{2})^{3}$; (6)$x^{2}· x^{4}+(x^{3})^{2}+(-3x^{2})^{3}$.
(1)$(-2a^{2}bc^{3})^{4}$; (2)$(-2xy^{2})^{6}+(-3x^{2}y^{4})^{3}$;
(3)$n· n^{2}· (-n)^{3}+(-3n^{2})^{3}$; (4)$(2x^{2})^{3}+x^{4}· x^{2}$;
(5)$(-3x^{3})^{2}-x^{2}· x^{4}-(x^{2})^{3}$; (6)$x^{2}· x^{4}+(x^{3})^{2}+(-3x^{2})^{3}$.
答案:2. (1)$16a^{8}b^{4}c^{12}$ (2)$37x^{5}y^{12}$ (3)$-28n^{6}$ (4)$9x^{6}$ (5)$7x^{6}$ (6)$-25x^{6}$
解析:
(1)$(-2a^{2}bc^{3})^{4}=(-2)^{4}·(a^{2})^{4}·b^{4}·(c^{3})^{4}=16a^{8}b^{4}c^{12}$;
(2)$(-2xy^{2})^{6}+(-3x^{2}y^{4})^{3}=(-2)^{6}·x^{6}·(y^{2})^{6}+(-3)^{3}·(x^{2})^{3}·(y^{4})^{3}=64x^{6}y^{12}-27x^{6}y^{12}=37x^{6}y^{12}$;
(3)$n·n^{2}·(-n)^{3}+(-3n^{2})^{3}=n·n^{2}·(-n^{3})+(-27n^{6})=-n^{6}-27n^{6}=-28n^{6}$;
(4)$(2x^{2})^{3}+x^{4}·x^{2}=8x^{6}+x^{6}=9x^{6}$;
(5)$(-3x^{3})^{2}-x^{2}·x^{4}-(x^{2})^{3}=9x^{6}-x^{6}-x^{6}=7x^{6}$;
(6)$x^{2}·x^{4}+(x^{3})^{2}+(-3x^{2})^{3}=x^{6}+x^{6}-27x^{6}=-25x^{6}$
(2)$(-2xy^{2})^{6}+(-3x^{2}y^{4})^{3}=(-2)^{6}·x^{6}·(y^{2})^{6}+(-3)^{3}·(x^{2})^{3}·(y^{4})^{3}=64x^{6}y^{12}-27x^{6}y^{12}=37x^{6}y^{12}$;
(3)$n·n^{2}·(-n)^{3}+(-3n^{2})^{3}=n·n^{2}·(-n^{3})+(-27n^{6})=-n^{6}-27n^{6}=-28n^{6}$;
(4)$(2x^{2})^{3}+x^{4}·x^{2}=8x^{6}+x^{6}=9x^{6}$;
(5)$(-3x^{3})^{2}-x^{2}·x^{4}-(x^{2})^{3}=9x^{6}-x^{6}-x^{6}=7x^{6}$;
(6)$x^{2}·x^{4}+(x^{3})^{2}+(-3x^{2})^{3}=x^{6}+x^{6}-27x^{6}=-25x^{6}$
3. 计算:$0.25^{6}×2^{12}-(\frac {1}{3})^{4}×(-3)^{5}$.
答案:3. 解:原式$=0.25^{6}×4^{6}-(\dfrac{1}{3})^{4}×(-3)^{4}×(-3)=(0.25×4)^{6}-(-3×\dfrac{1}{3})^{4}×(-3)=1^{6}-(-1)^{4}×(-3)=1-1×(-3)=1 + 3 = 4$.
解析:
解:原式$=0.25^{6} × 4^{6} - (\dfrac{1}{3})^{4} × (-3)^{4} × (-3)$
$=(0.25 × 4)^{6} - (-3 × \dfrac{1}{3})^{4} × (-3)$
$=1^{6} - (-1)^{4} × (-3)$
$=1 - 1 × (-3)$
$=1 + 3$
$=4$
$=(0.25 × 4)^{6} - (-3 × \dfrac{1}{3})^{4} × (-3)$
$=1^{6} - (-1)^{4} × (-3)$
$=1 - 1 × (-3)$
$=1 + 3$
$=4$