1. (2024·亳州三模)已知 $25^{x}=a$,$5^{y}=b$,$125^{z}=ab$,那么 $x$,$y$,$z$ 满足的等量关系是(
A.$2x + y = z$
B.$xy = 3z$
C.$2x + y = 3z$
D.$2xy = z$
C
)A.$2x + y = z$
B.$xy = 3z$
C.$2x + y = 3z$
D.$2xy = z$
答案:1. C
解析:
因为$25^{x}=a$,而$25 = 5^{2}$,所以$a=(5^{2})^{x}=5^{2x}$。
因为$5^{y}=b$,所以$ab = 5^{2x} · 5^{y}=5^{2x + y}$。
又因为$125^{z}=ab$,且$125 = 5^{3}$,所以$125^{z}=(5^{3})^{z}=5^{3z}$。
因此$5^{2x + y}=5^{3z}$,则$2x + y = 3z$。
C
因为$5^{y}=b$,所以$ab = 5^{2x} · 5^{y}=5^{2x + y}$。
又因为$125^{z}=ab$,且$125 = 5^{3}$,所以$125^{z}=(5^{3})^{z}=5^{3z}$。
因此$5^{2x + y}=5^{3z}$,则$2x + y = 3z$。
C
2. (2024·宿迁期末)已知 $27^{a}×9^{b}=81$,且 $a≥2b$,则 $8a + 4b$ 的最小值为(
A.9
B.10
C.11
D.12
B
)A.9
B.10
C.11
D.12
答案:2. B
解析:
因为$27^{a}×9^{b}=81$,而$27=3^{3}$,$9=3^{2}$,$81=3^{4}$,所以$(3^{3})^{a}×(3^{2})^{b}=3^{4}$,即$3^{3a + 2b}=3^{4}$,可得$3a + 2b = 4$。
由$3a + 2b = 4$,得$a=\dfrac{4 - 2b}{3}$。
因为$a≥2b$,所以$\dfrac{4 - 2b}{3}≥2b$,$4 - 2b≥6b$,$4≥8b$,解得$b≤\dfrac{1}{2}$。
$8a + 4b = 8×\dfrac{4 - 2b}{3}+4b=\dfrac{32 - 16b}{3}+\dfrac{12b}{3}=\dfrac{32 - 4b}{3}$。
因为$b≤\dfrac{1}{2}$,所以$-4b≥ - 2$,$32 - 4b≥30$,$\dfrac{32 - 4b}{3}≥10$,即$8a + 4b$的最小值为$10$。
B
由$3a + 2b = 4$,得$a=\dfrac{4 - 2b}{3}$。
因为$a≥2b$,所以$\dfrac{4 - 2b}{3}≥2b$,$4 - 2b≥6b$,$4≥8b$,解得$b≤\dfrac{1}{2}$。
$8a + 4b = 8×\dfrac{4 - 2b}{3}+4b=\dfrac{32 - 16b}{3}+\dfrac{12b}{3}=\dfrac{32 - 4b}{3}$。
因为$b≤\dfrac{1}{2}$,所以$-4b≥ - 2$,$32 - 4b≥30$,$\dfrac{32 - 4b}{3}≥10$,即$8a + 4b$的最小值为$10$。
B
3. (2024·江都区校级月考)若 $2x + 5y = 4$,则 $16^{x}×32^{2y}+2^{7}$ 的值为
384
.答案:3. 384
解析:
$16^{x} × 32^{2y} + 2^{7}$
$=(2^{4})^{x} × (2^{5})^{2y} + 128$
$=2^{4x} × 2^{10y} + 128$
$=2^{4x + 10y} + 128$
$=2^{2(2x + 5y)} + 128$
因为$2x + 5y = 4$,所以$2^{2×4} + 128 = 2^{8} + 128 = 256 + 128 = 384$
384
$=(2^{4})^{x} × (2^{5})^{2y} + 128$
$=2^{4x} × 2^{10y} + 128$
$=2^{4x + 10y} + 128$
$=2^{2(2x + 5y)} + 128$
因为$2x + 5y = 4$,所以$2^{2×4} + 128 = 2^{8} + 128 = 256 + 128 = 384$
384
4. (2024·东台月考)已知 $27^{x + 1}-3^{3x}=234$,求 $x$ 的值.
答案:4. 解:$\because 27^{x + 1} - 3^{3x} = 234$,$\therefore 27^{x + 1} - (3^{3})^{x} = 234$,
$\therefore 27^{x + 1} - 27^{x} = 234$,
$\therefore 27× 27^{x} - 27^{x} = 234$,$\therefore 26× 27^{x} = 234$,$\therefore 27^{x} = 9$,
$\therefore (3^{3})^{x} = 3^{2}$,
$\therefore 3^{3x} = 3^{2}$,$\therefore 3x = 2$,$\therefore x = \frac{2}{3}$。
$\therefore 27^{x + 1} - 27^{x} = 234$,
$\therefore 27× 27^{x} - 27^{x} = 234$,$\therefore 26× 27^{x} = 234$,$\therefore 27^{x} = 9$,
$\therefore (3^{3})^{x} = 3^{2}$,
$\therefore 3^{3x} = 3^{2}$,$\therefore 3x = 2$,$\therefore x = \frac{2}{3}$。
5. (2024·吴江区校级月考)已知 $4^{m}=a$,$8^{n}=b$.
(1)求 $2^{2m + 3n}$ 的值.
(2)①求 $2^{4m - 6n}$ 的值;
②已知 $2×8^{x}×16 = 2^{26}$,求 $x$ 的值.
(1)求 $2^{2m + 3n}$ 的值.
(2)①求 $2^{4m - 6n}$ 的值;
②已知 $2×8^{x}×16 = 2^{26}$,求 $x$ 的值.
答案:5. 解:(1)$\because 4^{m} = a$,$8^{n} = b$,$\therefore 2^{2m} = a$,$2^{3n} = b$,$2^{2m + 3n} = 2^{2m}· 2^{3n} = ab$。
(2)①$\because 2^{2m} = a$,$2^{3n} = b$,$\therefore 2^{4m - 6n} = 2^{4m}÷ 2^{6n} = (2^{2m})^{2}÷ (2^{3n})^{2} = \frac{a^{2}}{b^{2}}$。
②$\because 2× 8^{x}× 16 = 2^{26}$,$\therefore 2× (2^{3})^{x}× 2^{4} = 2^{26}$,
$\therefore 2× 2^{3x}× 2^{4} = 2^{26}$,$\therefore 2^{1 + 3x + 4} = 2^{26}$,
$\therefore 1 + 3x + 4 = 26$,解得$x = 7$。
(2)①$\because 2^{2m} = a$,$2^{3n} = b$,$\therefore 2^{4m - 6n} = 2^{4m}÷ 2^{6n} = (2^{2m})^{2}÷ (2^{3n})^{2} = \frac{a^{2}}{b^{2}}$。
②$\because 2× 8^{x}× 16 = 2^{26}$,$\therefore 2× (2^{3})^{x}× 2^{4} = 2^{26}$,
$\therefore 2× 2^{3x}× 2^{4} = 2^{26}$,$\therefore 2^{1 + 3x + 4} = 2^{26}$,
$\therefore 1 + 3x + 4 = 26$,解得$x = 7$。