21. (10分)(2024·泗阳期中)如图,在△ABC中,∠B=∠ACB,∠A=40°,射线CP从射线CA开始绕点C按逆时针方向旋转α角(0°<α<70°),与射线AB相交于点D,将△ACD沿射线CP翻折至△A'CD处,射线CA'与射线AB相交于点E.
(1)若AB⊥CE,求α的度数;
(2)设∠A'DB=β,探究α与β之间的数量关系.

(1)若AB⊥CE,求α的度数;
(2)设∠A'DB=β,探究α与β之间的数量关系.
答案:
21. 解:(1)因为$AB ⊥ CE$,所以$∠ AEC = 90^{\circ}$.
又因为$∠ A = 40^{\circ}$,所以$∠ ACE = 90^{\circ} - 40^{\circ} = 50^{\circ}$.
由翻折的性质可知,$∠ ACE = 2α$,所以$α = \frac{1}{2} × 50^{\circ} = 25^{\circ}$.
(2)当点$A'$在射线AB下方时,
因为$∠ A = 40^{\circ}$,$∠ ACD = α$,所以$∠ ADC = 180^{\circ} - ∠ A - ∠ ACD = 180^{\circ} - 40^{\circ} - α = 140^{\circ} - α$,所以$∠ CDE = 180^{\circ} - ∠ ADC = 180^{\circ} - (140^{\circ} - α) = α + 40^{\circ}$.
由折叠的性质可知,$∠ A' = ∠ A = 40^{\circ}$,$∠ ADC = ∠ A'DC$,
又因为$∠ ADC = 140^{\circ} - α$,$∠ A'DC = ∠ CDE + ∠ A'DB = α + 40^{\circ} + β$,
所以$140^{\circ} - α = α + 40^{\circ} + β$,即$2α + β = 100^{\circ}$;
当点$A'$在射线AB上方时,如答图,

因为$∠ A = 40^{\circ}$,$∠ ACE = 2α$,
所以$∠ CEA = 180^{\circ} - 40^{\circ} - 2α = 140^{\circ} - 2α$.
因为$∠ CEA + ∠ A'DB + ∠ DA'E = 180^{\circ}$,$∠ CA'D + ∠ DA'E = 180^{\circ}$,
所以$∠ CEA + ∠ A'DB = ∠ CA'D$,
又因为$∠ CA'D = ∠ A = 40^{\circ}$,
所以$140^{\circ} - 2α + β = 40^{\circ}$,所以$2α - β = 100^{\circ}$.
综上所述,$α$与$β$之间的数量关系为$2α + β = 100^{\circ}$或$2α - β = 100^{\circ}$.
21. 解:(1)因为$AB ⊥ CE$,所以$∠ AEC = 90^{\circ}$.
又因为$∠ A = 40^{\circ}$,所以$∠ ACE = 90^{\circ} - 40^{\circ} = 50^{\circ}$.
由翻折的性质可知,$∠ ACE = 2α$,所以$α = \frac{1}{2} × 50^{\circ} = 25^{\circ}$.
(2)当点$A'$在射线AB下方时,
因为$∠ A = 40^{\circ}$,$∠ ACD = α$,所以$∠ ADC = 180^{\circ} - ∠ A - ∠ ACD = 180^{\circ} - 40^{\circ} - α = 140^{\circ} - α$,所以$∠ CDE = 180^{\circ} - ∠ ADC = 180^{\circ} - (140^{\circ} - α) = α + 40^{\circ}$.
由折叠的性质可知,$∠ A' = ∠ A = 40^{\circ}$,$∠ ADC = ∠ A'DC$,
又因为$∠ ADC = 140^{\circ} - α$,$∠ A'DC = ∠ CDE + ∠ A'DB = α + 40^{\circ} + β$,
所以$140^{\circ} - α = α + 40^{\circ} + β$,即$2α + β = 100^{\circ}$;
当点$A'$在射线AB上方时,如答图,
因为$∠ A = 40^{\circ}$,$∠ ACE = 2α$,
所以$∠ CEA = 180^{\circ} - 40^{\circ} - 2α = 140^{\circ} - 2α$.
因为$∠ CEA + ∠ A'DB + ∠ DA'E = 180^{\circ}$,$∠ CA'D + ∠ DA'E = 180^{\circ}$,
所以$∠ CEA + ∠ A'DB = ∠ CA'D$,
又因为$∠ CA'D = ∠ A = 40^{\circ}$,
所以$140^{\circ} - 2α + β = 40^{\circ}$,所以$2α - β = 100^{\circ}$.
综上所述,$α$与$β$之间的数量关系为$2α + β = 100^{\circ}$或$2α - β = 100^{\circ}$.
22. (10分)(2024·太仓期末)已知“两点之间,线段最短”,我们经常利用它来解决两线段和最小值问题.
【实践运用】(1)唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——将军饮马问题:如图①所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后,再到B点宿营,请问怎样走才能使总的路程最短?画出最短路径并说明理由;
【拓展延伸】(2)如图②,P,Q是△ABC的边AC,AB上的两个定点,请在BC上找一点R,使得△PQR的周长最短.(要求:尺规作图,不写作图过程,保留作图痕迹)

【实践运用】(1)唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——将军饮马问题:如图①所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后,再到B点宿营,请问怎样走才能使总的路程最短?画出最短路径并说明理由;
【拓展延伸】(2)如图②,P,Q是△ABC的边AC,AB上的两个定点,请在BC上找一点R,使得△PQR的周长最短.(要求:尺规作图,不写作图过程,保留作图痕迹)
答案:
22. 解:(1)如答图①,从点A出发向河岸引垂线,垂足为D,在AD的延长线上取点$A'$,使得$A'D = AD$,连接$A'B$,与河岸相交于点C,则点C就是饮马的地方,$AC + CB$即为最短路径.

理由:如答图①,如果将军在河边的另外任意点$C'$饮马,所走的路程就是$AC' + C'B$,因为$AC = A'C'$,所以$AC' + C'B = A'C' + C'B > A'B = A'C + CB = AC + BC$,即$AC' + BC' > AC + CB$,所以在点C外任意一点饮马,所走的路程都要远些.
(2)如答图②,点R即为所求.
22. 解:(1)如答图①,从点A出发向河岸引垂线,垂足为D,在AD的延长线上取点$A'$,使得$A'D = AD$,连接$A'B$,与河岸相交于点C,则点C就是饮马的地方,$AC + CB$即为最短路径.
理由:如答图①,如果将军在河边的另外任意点$C'$饮马,所走的路程就是$AC' + C'B$,因为$AC = A'C'$,所以$AC' + C'B = A'C' + C'B > A'B = A'C + CB = AC + BC$,即$AC' + BC' > AC + CB$,所以在点C外任意一点饮马,所走的路程都要远些.
(2)如答图②,点R即为所求.
23. (12分)(2024·姑苏区期中)(1)如图①,AB//CD,点E,F分别在直线CD,AB上,∠BEC=3∠BEF,过点A作AG⊥EF交EF于点G,FK平分∠AFE,AK平分∠PAG,FK与AK交于点K.
①∠AKF=
②若∠FAG=$\frac{1}{2}$∠BEF,求∠FBE的度数.
(2)如图②,将②中确定的△BEF绕着点F以每秒4°的速度逆时针旋转,旋转时间为t秒,△AFG保持不变,当边BF与射线FA重合时停止,则在旋转过程中,△BEF的边BE所在的直线与△AFG的某一边所在的直线垂直时,直接写出此时t的值.

①∠AKF=
45
°;②若∠FAG=$\frac{1}{2}$∠BEF,求∠FBE的度数.
(2)如图②,将②中确定的△BEF绕着点F以每秒4°的速度逆时针旋转,旋转时间为t秒,△AFG保持不变,当边BF与射线FA重合时停止,则在旋转过程中,△BEF的边BE所在的直线与△AFG的某一边所在的直线垂直时,直接写出此时t的值.
答案:
23. (1)①45
②解:因为$AG ⊥ EF$,所以$∠ AGE = ∠ AGF = 90^{\circ}$,
所以$∠ EFA + ∠ FAG = 90^{\circ}$.
因为$∠ FAG = \frac{1}{2} ∠ BEF$,
所以$∠ EFH + ∠ HFA + \frac{1}{2} ∠ BEF = 90^{\circ}$.
因为$AB // CD$,所以$∠ FBE = ∠ BEC$,$∠ CEF = ∠ AFE = ∠ EFH + ∠ HFA$.
又因为$∠ CEF = ∠ BEC + ∠ BEF$,$∠ BEC = 3∠ BEF$,
所以$∠ CEF = 4∠ BEF$,
所以$4∠ BEF + \frac{1}{2} ∠ BEF = 90^{\circ}$,解得$∠ BEF = 20^{\circ}$,
所以$∠ BEC = 3∠ BEF = 60^{\circ}$,所以$∠ FBE = ∠ BEC = 60^{\circ}$.
(2)解:由②可得$∠ FBE = 60^{\circ}$,$∠ BEF = 20^{\circ}$,$∠ FAG = \frac{1}{2} ∠ BEF = 10^{\circ}$,$∠ AFG = 80^{\circ}$,$∠ BFE = 100^{\circ}$.
当$B'E' ⊥ FG$时,如答图①.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ EFE' = 90^{\circ} - 20^{\circ} = 70^{\circ}$,
所以$∠ B'FE = 100^{\circ} - 70^{\circ} = 30^{\circ}$,
所以$∠ BFB' = 100^{\circ} - ∠ B'FE = 70^{\circ}$,
此时旋转时间$t = \frac{70}{4} = 17.5$(秒);

当$B'E' ⊥ AF$时,如答图②.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ AFE' = 90^{\circ} - 20^{\circ} = 70^{\circ}$,
所以$∠ B'FA = 100^{\circ} - 70^{\circ} = 30^{\circ}$,
所以$∠ BFB' = 180^{\circ} - ∠ B'FA = 150^{\circ}$,
此时旋转时间$t = \frac{150}{4} = 37.5$(秒);
当$B'E' ⊥ AG$时,如答图③.
因为$∠ FAG = 10^{\circ}$,所以$∠ B'HA = 90^{\circ} - 10^{\circ} = 80^{\circ} = ∠ E'HF$.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ E'FA = 180^{\circ} - 80^{\circ} - 20^{\circ} = 80^{\circ}$,
所以$∠ B'FA = 100^{\circ} - 80^{\circ} = 20^{\circ}$,
所以$∠ BFB' = 180^{\circ} - ∠ B'FA = 160^{\circ}$,
此时旋转时间$t = \frac{160}{4} = 40$(秒).
综上,此时t的值为17.5或37.5或40.
23. (1)①45
②解:因为$AG ⊥ EF$,所以$∠ AGE = ∠ AGF = 90^{\circ}$,
所以$∠ EFA + ∠ FAG = 90^{\circ}$.
因为$∠ FAG = \frac{1}{2} ∠ BEF$,
所以$∠ EFH + ∠ HFA + \frac{1}{2} ∠ BEF = 90^{\circ}$.
因为$AB // CD$,所以$∠ FBE = ∠ BEC$,$∠ CEF = ∠ AFE = ∠ EFH + ∠ HFA$.
又因为$∠ CEF = ∠ BEC + ∠ BEF$,$∠ BEC = 3∠ BEF$,
所以$∠ CEF = 4∠ BEF$,
所以$4∠ BEF + \frac{1}{2} ∠ BEF = 90^{\circ}$,解得$∠ BEF = 20^{\circ}$,
所以$∠ BEC = 3∠ BEF = 60^{\circ}$,所以$∠ FBE = ∠ BEC = 60^{\circ}$.
(2)解:由②可得$∠ FBE = 60^{\circ}$,$∠ BEF = 20^{\circ}$,$∠ FAG = \frac{1}{2} ∠ BEF = 10^{\circ}$,$∠ AFG = 80^{\circ}$,$∠ BFE = 100^{\circ}$.
当$B'E' ⊥ FG$时,如答图①.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ EFE' = 90^{\circ} - 20^{\circ} = 70^{\circ}$,
所以$∠ B'FE = 100^{\circ} - 70^{\circ} = 30^{\circ}$,
所以$∠ BFB' = 100^{\circ} - ∠ B'FE = 70^{\circ}$,
此时旋转时间$t = \frac{70}{4} = 17.5$(秒);
当$B'E' ⊥ AF$时,如答图②.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ AFE' = 90^{\circ} - 20^{\circ} = 70^{\circ}$,
所以$∠ B'FA = 100^{\circ} - 70^{\circ} = 30^{\circ}$,
所以$∠ BFB' = 180^{\circ} - ∠ B'FA = 150^{\circ}$,
此时旋转时间$t = \frac{150}{4} = 37.5$(秒);
当$B'E' ⊥ AG$时,如答图③.
因为$∠ FAG = 10^{\circ}$,所以$∠ B'HA = 90^{\circ} - 10^{\circ} = 80^{\circ} = ∠ E'HF$.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ E'FA = 180^{\circ} - 80^{\circ} - 20^{\circ} = 80^{\circ}$,
所以$∠ B'FA = 100^{\circ} - 80^{\circ} = 20^{\circ}$,
所以$∠ BFB' = 180^{\circ} - ∠ B'FA = 160^{\circ}$,
此时旋转时间$t = \frac{160}{4} = 40$(秒).
综上,此时t的值为17.5或37.5或40.