1. (2024·秦淮区期末)下列二次根式中,最简二次根式是(
A.$\sqrt{1.2}$
B.$\sqrt{14}$
C.$\sqrt{18}$
D.$\sqrt{\dfrac{1}{2}}$
B
)A.$\sqrt{1.2}$
B.$\sqrt{14}$
C.$\sqrt{18}$
D.$\sqrt{\dfrac{1}{2}}$
答案:1. B
2. 将$\sqrt{\dfrac{45}{2}}$化为最简二次根式,其结果是(
A.$\dfrac{\sqrt{45}}{2}$
B.$\dfrac{\sqrt{90}}{2}$
C.$\dfrac{9\sqrt{10}}{2}$
D.$\dfrac{3\sqrt{10}}{2}$
D
)A.$\dfrac{\sqrt{45}}{2}$
B.$\dfrac{\sqrt{90}}{2}$
C.$\dfrac{9\sqrt{10}}{2}$
D.$\dfrac{3\sqrt{10}}{2}$
答案:2. D
解析:
$\begin{aligned}\sqrt{\dfrac{45}{2}}&=\dfrac{\sqrt{45}}{\sqrt{2}}\\&=\dfrac{\sqrt{9×5}}{\sqrt{2}}\\&=\dfrac{3\sqrt{5}}{\sqrt{2}}\\&=\dfrac{3\sqrt{5}×\sqrt{2}}{\sqrt{2}×\sqrt{2}}\\&=\dfrac{3\sqrt{10}}{2}\end{aligned}$
D
D
3. 下列各式中,化简正确的是(
A.$\sqrt{\dfrac{5}{3}} = 3\sqrt{15}$
B.$\sqrt{\dfrac{1}{2}} = \pm\dfrac{1}{2}\sqrt{2}$
C.$\sqrt{a^{4}b} = a^{2}\sqrt{b}$
D.$\sqrt{x^{3}-x^{2}} = -x\sqrt{x - 1}$
C
)A.$\sqrt{\dfrac{5}{3}} = 3\sqrt{15}$
B.$\sqrt{\dfrac{1}{2}} = \pm\dfrac{1}{2}\sqrt{2}$
C.$\sqrt{a^{4}b} = a^{2}\sqrt{b}$
D.$\sqrt{x^{3}-x^{2}} = -x\sqrt{x - 1}$
答案:3. C
解析:
A. $\sqrt{\dfrac{5}{3}}=\dfrac{\sqrt{15}}{3}$,故A错误;
B. $\sqrt{\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}$,故B错误;
C. $\sqrt{a^{4}b}=a^{2}\sqrt{b}$,故C正确;
D. $\sqrt{x^{3}-x^{2}}=x\sqrt{x - 1}$($x≥1$),故D错误。
答案:C
B. $\sqrt{\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}$,故B错误;
C. $\sqrt{a^{4}b}=a^{2}\sqrt{b}$,故C正确;
D. $\sqrt{x^{3}-x^{2}}=x\sqrt{x - 1}$($x≥1$),故D错误。
答案:C
4. 计算$\sqrt{3}×\sqrt{2}÷\dfrac{1}{\sqrt{6}}$的结果为
6
.答案:4. 6
解析:
$\sqrt{3} × \sqrt{2} ÷ \dfrac{1}{\sqrt{6}}$
$=\sqrt{3 × 2} × \sqrt{6}$
$=\sqrt{6} × \sqrt{6}$
$=6$
$=\sqrt{3 × 2} × \sqrt{6}$
$=\sqrt{6} × \sqrt{6}$
$=6$
5. 把下列各式化成最简二次根式:
(1)$\sqrt{\dfrac{49a^{3}}{9}}$;
(2)$\sqrt{\dfrac{1}{4}+\dfrac{1}{9}}$;
(3)$x^{2}\sqrt{\dfrac{2}{x}}$.
(1)$\sqrt{\dfrac{49a^{3}}{9}}$;
(2)$\sqrt{\dfrac{1}{4}+\dfrac{1}{9}}$;
(3)$x^{2}\sqrt{\dfrac{2}{x}}$.
答案:5. (1) $\frac{7}{3}a\sqrt{a}$
(2) $\frac{\sqrt{13}}{6}$
(3) $x\sqrt{2x}$
(2) $\frac{\sqrt{13}}{6}$
(3) $x\sqrt{2x}$
6. 计算:
(1)$\sqrt{18}÷\sqrt{\dfrac{27}{2}}$;
(2)$\sqrt{6x^{2}}÷\sqrt{12x^{3}y}(y > 0)$;
(3)$-6\sqrt{8}×2\sqrt{6}÷4\sqrt{27}$;
(4)$\sqrt{30}÷3\sqrt{\dfrac{8}{5}}×\dfrac{2}{3}\sqrt{\dfrac{20}{3}}$.
(1)$\sqrt{18}÷\sqrt{\dfrac{27}{2}}$;
(2)$\sqrt{6x^{2}}÷\sqrt{12x^{3}y}(y > 0)$;
(3)$-6\sqrt{8}×2\sqrt{6}÷4\sqrt{27}$;
(4)$\sqrt{30}÷3\sqrt{\dfrac{8}{5}}×\dfrac{2}{3}\sqrt{\dfrac{20}{3}}$.
答案:6. 解:(1) 原式 $=\sqrt{18÷\frac{27}{2}}=\sqrt{18×\frac{2}{27}}=\sqrt{\frac{12}{9}}=\frac{2\sqrt{3}}{3}$
(2) 原式 $=\sqrt{\frac{6x^{2}}{12x^{3}y}}=\sqrt{\frac{1}{2xy}}=\frac{\sqrt{2xy}}{2xy}$
(3) 原式 $=-12\sqrt{2}×2\sqrt{6}÷12\sqrt{3}=-48\sqrt{3}÷12\sqrt{3}=-4$
(4) 原式 $=(1×\frac{1}{3}×\frac{2}{3})×\sqrt{30×\frac{5}{8}×\frac{20}{3}}=\frac{2}{9}×5\sqrt{5}=\frac{10}{9}\sqrt{5}$
(2) 原式 $=\sqrt{\frac{6x^{2}}{12x^{3}y}}=\sqrt{\frac{1}{2xy}}=\frac{\sqrt{2xy}}{2xy}$
(3) 原式 $=-12\sqrt{2}×2\sqrt{6}÷12\sqrt{3}=-48\sqrt{3}÷12\sqrt{3}=-4$
(4) 原式 $=(1×\frac{1}{3}×\frac{2}{3})×\sqrt{30×\frac{5}{8}×\frac{20}{3}}=\frac{2}{9}×5\sqrt{5}=\frac{10}{9}\sqrt{5}$