1. 分解因式:$4a^{2}-1=$(
A.$(2a - 1)(2a + 1)$
B.$(a - 2)(a + 2)$
C.$(a - 4)(a + 1)$
D.$(4a - 1)(a + 1)$
A
)A.$(2a - 1)(2a + 1)$
B.$(a - 2)(a + 2)$
C.$(a - 4)(a + 1)$
D.$(4a - 1)(a + 1)$
答案:1. A
2. (2024·建湖区期中)下列各式中,能用平方差公式进行因式分解的是(
A.$-a^{2}+b^{2}$
B.$-a^{2}-b^{2}$
C.$a^{2}+b^{2}$
D.$-(a^{2}+b^{2})$
A
)A.$-a^{2}+b^{2}$
B.$-a^{2}-b^{2}$
C.$a^{2}+b^{2}$
D.$-(a^{2}+b^{2})$
答案:2. A
3. (2025·连云港)分解因式:$x^{2}-9=$
(x + 3)(x - 3)
.答案:3. $(x + 3)(x - 3)$
4. 分解因式:
(1) $1 - 4a^{2}$;
(2) $9x^{2}-16y^{2}$;
(3) $-25x^{2}+y^{2}$;
(4) $a^{2}x^{2}-81b^{2}y^{4}$;
(5) $(a + 1)^{2}-1$;
(6) $(2a - b)^{2}-b^{2}$.
(1) $1 - 4a^{2}$;
(2) $9x^{2}-16y^{2}$;
(3) $-25x^{2}+y^{2}$;
(4) $a^{2}x^{2}-81b^{2}y^{4}$;
(5) $(a + 1)^{2}-1$;
(6) $(2a - b)^{2}-b^{2}$.
答案:4. (1) $(1 + 2a)(1 - 2a)$ (2) $(3x + 4y)(3x - 4y)$ (3) $(y + 5x)(y - 5x)$ (4) $(ax + 9by^{2})(ax - 9by^{2})$ (5) $a(a + 2)$ (6) $4a(a - b)$
5. 把多项式$5x^{2}-5y^{2}$分解因式的结果为(
A.$5(x^{2}-y^{2})$
B.$5(x - y)^{2}$
C.$(5x + 5y)(x - y)$
D.$5(x + y)(x - y)$
D
)A.$5(x^{2}-y^{2})$
B.$5(x - y)^{2}$
C.$(5x + 5y)(x - y)$
D.$5(x + y)(x - y)$
答案:5. D
解析:
5. $5x^{2}-5y^{2}=5(x^{2}-y^{2})=5(x+y)(x-y)$,D
6. 若$m$为大于$0$的整数,则$(m + 1)^{2}-(m - 1)^{2}$一定是(
A.$3$的倍数
B.$4$的倍数
C.$6$的倍数
D.$16$的倍数
B
)A.$3$的倍数
B.$4$的倍数
C.$6$的倍数
D.$16$的倍数
答案:6. B
解析:
$(m + 1)^{2}-(m - 1)^{2}$
$=m^{2}+2m + 1-(m^{2}-2m + 1)$
$=m^{2}+2m + 1 - m^{2}+2m - 1$
$=4m$
因为$m$为大于$0$的整数,所以$4m$一定是$4$的倍数。
B
$=m^{2}+2m + 1-(m^{2}-2m + 1)$
$=m^{2}+2m + 1 - m^{2}+2m - 1$
$=4m$
因为$m$为大于$0$的整数,所以$4m$一定是$4$的倍数。
B
7. 分解因式:$3x^{2}y - 3y=$
3y(x + 1)(x - 1)
.答案:7. $3y(x + 1)(x - 1)$
8. (1)若$a + b = 4$,$a - b = 1$,则$(a + 1)^{2}-(b - 1)^{2}$的值为;
(2)(2024·苏州期中)如果$x$,$y$满足$\begin{cases}x - 2y = 2,\\x + 2y = 3,\end{cases}$那么代数式$4y^{2}-x^{2}$的值为 ______ .
(2)(2024·苏州期中)如果$x$,$y$满足$\begin{cases}x - 2y = 2,\\x + 2y = 3,\end{cases}$那么代数式$4y^{2}-x^{2}$的值为 ______ .
答案:8. (1) 12 (2) -6
解析:
(1) $\because a + b = 4$,$a - b = 1$,
$\therefore (a + 1)^{2}-(b - 1)^{2} = [(a + 1) + (b - 1)][(a + 1)-(b - 1)] = (a + b)(a - b + 2) = 4×(1 + 2) = 12$;
(2) $\because \begin{cases}x - 2y = 2 \\ x + 2y = 3\end{cases}$,
$\therefore 4y^{2}-x^{2}=-(x^{2}-4y^{2})=-(x - 2y)(x + 2y)=-2×3=-6$。
12;-6
$\therefore (a + 1)^{2}-(b - 1)^{2} = [(a + 1) + (b - 1)][(a + 1)-(b - 1)] = (a + b)(a - b + 2) = 4×(1 + 2) = 12$;
(2) $\because \begin{cases}x - 2y = 2 \\ x + 2y = 3\end{cases}$,
$\therefore 4y^{2}-x^{2}=-(x^{2}-4y^{2})=-(x - 2y)(x + 2y)=-2×3=-6$。
12;-6
9. 分解因式:
(1) $(x + 5)^{2}-4$;
(2) $x^{4}-81$.
(1) $(x + 5)^{2}-4$;
(2) $x^{4}-81$.
答案:9. 解: (1) 原式 $=(x + 5 + 2)(x + 5 - 2) = (x + 7)(x + 3)$
(2) 原式 $=(x^{2} + 9)(x^{2} - 9) = (x^{2} + 9)(x + 3)(x - 3)$
(2) 原式 $=(x^{2} + 9)(x^{2} - 9) = (x^{2} + 9)(x + 3)(x - 3)$