1. 同分母的分式相加减,分母,把分子,即 $\frac{b}{a} \pm \frac{c}{a} =\_\_\_\_\_\_(a ≠ 0)$。
答案:1. 不变 相加减 $\frac{b \pm c}{a}$
2. 异分母的分式相加减,先,再,即 $\frac{b}{a} \pm \frac{d}{c} =\_\_\_\_\_\_(a ≠ 0,c ≠ 0)$。
答案:2. 通分 加减 $\frac{bc \pm ad}{ac}$
1. 计算 $\frac{a - 1}{a} + \frac{1}{a}$,正确的结果是(
A.1
B.$\frac{1}{2}$
C.$a$
D.$\frac{1}{a}$
A
)A.1
B.$\frac{1}{2}$
C.$a$
D.$\frac{1}{a}$
答案:1. A
解析:
$\frac{a - 1}{a} + \frac{1}{a} = \frac{(a - 1) + 1}{a} = \frac{a}{a} = 1$,答案选A。
2. 化简 $\frac{x}{x - 1} - \frac{-x}{1 - x}$ 的结果是(
A.0
B.$-1$
C.1
D.$x$
A
)A.0
B.$-1$
C.1
D.$x$
答案:2. A
解析:
$\begin{aligned}\frac{x}{x - 1} - \frac{-x}{1 - x}&=\frac{x}{x - 1} - \frac{-x}{-(x - 1)}\\&=\frac{x}{x - 1} - \frac{x}{x - 1}\\&=0\end{aligned}$
A
A
3. 计算 $\frac{4}{x - 5} + 1$ 的结果为(
A.$\frac{x + 1}{x - 5}$
B.$\frac{x - 1}{x - 5}$
C.$\frac{5}{x - 5}$
D.$\frac{4}{x - 4}$
B
)A.$\frac{x + 1}{x - 5}$
B.$\frac{x - 1}{x - 5}$
C.$\frac{5}{x - 5}$
D.$\frac{4}{x - 4}$
答案:3. B
解析:
$\begin{aligned}\frac{4}{x - 5} + 1&=\frac{4}{x - 5} + \frac{x - 5}{x - 5}\\&=\frac{4 + x - 5}{x - 5}\\&=\frac{x - 1}{x - 5}\end{aligned}$
B
B
4. 计算:$\frac{1}{a} + \frac{1}{2a} =$
$\frac{3}{2a}$
。答案:4. $\frac{3}{2a}$
解析:
$\frac{1}{a} + \frac{1}{2a} = \frac{2}{2a} + \frac{1}{2a} = \frac{3}{2a}$
5. (2024·常州)计算:$\frac{1}{x + 1} + \frac{x}{x + 1} =$
1
。答案:5. 1
解析:
$\frac{1}{x + 1} + \frac{x}{x + 1} = \frac{1 + x}{x + 1} = 1$
6. 填空:$\frac{3 - 2x}{x - 1} =\_\_\_\_\_\_ + \frac{1}{x - 1}$。
答案:6. -2
解析:
设等式右边的未知项为$A$,则有:
$\frac{3 - 2x}{x - 1} = A + \frac{1}{x - 1}$
移项可得:
$A = \frac{3 - 2x}{x - 1} - \frac{1}{x - 1} = \frac{3 - 2x - 1}{x - 1} = \frac{2 - 2x}{x - 1} = \frac{-2(x - 1)}{x - 1} = -2$
-2
$\frac{3 - 2x}{x - 1} = A + \frac{1}{x - 1}$
移项可得:
$A = \frac{3 - 2x}{x - 1} - \frac{1}{x - 1} = \frac{3 - 2x - 1}{x - 1} = \frac{2 - 2x}{x - 1} = \frac{-2(x - 1)}{x - 1} = -2$
-2
7. 若 $3xy = x - y ≠ 0$,则分式 $\frac{1}{x} - \frac{1}{y}$ 的值为
-3
。答案:7. -3
解析:
解:$\frac{1}{x} - \frac{1}{y} = \frac{y - x}{xy} = -\frac{x - y}{xy}$
因为$3xy = x - y$,所以$\frac{x - y}{xy} = 3$
则$-\frac{x - y}{xy} = -3$
故$\frac{1}{x} - \frac{1}{y} = -3$
因为$3xy = x - y$,所以$\frac{x - y}{xy} = 3$
则$-\frac{x - y}{xy} = -3$
故$\frac{1}{x} - \frac{1}{y} = -3$
8. 锅炉房储存了 $t$ 天用的煤 $m$ 吨,要使储存的煤比预定的多用 4 天,每天应该节约用煤
$\frac{4m}{t(t + 4)}$
吨。答案:8. $\frac{4m}{t(t + 4)}$
解析:
原计划每天用煤$\frac{m}{t}$吨,实际用煤天数为$(t + 4)$天,实际每天用煤$\frac{m}{t + 4}$吨,每天节约用煤$\frac{m}{t}-\frac{m}{t + 4}=\frac{m(t + 4)-mt}{t(t + 4)}=\frac{4m}{t(t + 4)}$吨。
$\frac{4m}{t(t + 4)}$
$\frac{4m}{t(t + 4)}$
9. 计算:
(1)$\frac{y}{x - y} - \frac{2xy}{x^{2} - y^{2}}$;
(2)$\frac{x + 1}{x - 1} - \frac{4x}{x^{2} - 1}$;
(3)$\frac{x^{2}}{x - 2} - x - 2$;
(4)$\frac{a + 1}{a - 1} - \frac{a^{2} + a}{a^{2} - 1}$。
(1)$\frac{y}{x - y} - \frac{2xy}{x^{2} - y^{2}}$;
(2)$\frac{x + 1}{x - 1} - \frac{4x}{x^{2} - 1}$;
(3)$\frac{x^{2}}{x - 2} - x - 2$;
(4)$\frac{a + 1}{a - 1} - \frac{a^{2} + a}{a^{2} - 1}$。
答案:9. 解:(1)原式 = $\frac{y(x + y)}{x^{2} - y^{2}} - \frac{2xy}{x^{2} - y^{2}} = \frac{y^{2} - xy}{x^{2} - y^{2}} =$ $\frac{y(y - x)}{(x - y)(x + y)} = -\frac{y}{x + y}$
(2)原式 = $\frac{(x + 1)^{2}}{(x + 1)(x - 1)} - \frac{4x}{(x + 1)(x - 1)} = \frac{(x - 1)^{2}}{(x + 1)(x - 1)} =$ $\frac{x - 1}{x + 1}$
(3)原式 = $\frac{x^{2}}{x - 2} - (x + 2) = \frac{x^{2}}{x - 2} - \frac{(x + 2)(x - 2)}{x - 2} =$ $\frac{4}{x - 2}$
(4)原式 = $\frac{a + 1}{a - 1} - \frac{a(a + 1)}{(a + 1)(a - 1)} = \frac{a + 1}{a - 1} - \frac{a}{a - 1} =$ $\frac{a + 1 - a}{a - 1} = \frac{1}{a - 1}$
(2)原式 = $\frac{(x + 1)^{2}}{(x + 1)(x - 1)} - \frac{4x}{(x + 1)(x - 1)} = \frac{(x - 1)^{2}}{(x + 1)(x - 1)} =$ $\frac{x - 1}{x + 1}$
(3)原式 = $\frac{x^{2}}{x - 2} - (x + 2) = \frac{x^{2}}{x - 2} - \frac{(x + 2)(x - 2)}{x - 2} =$ $\frac{4}{x - 2}$
(4)原式 = $\frac{a + 1}{a - 1} - \frac{a(a + 1)}{(a + 1)(a - 1)} = \frac{a + 1}{a - 1} - \frac{a}{a - 1} =$ $\frac{a + 1 - a}{a - 1} = \frac{1}{a - 1}$