11. (2025·北京)若$\sqrt{3x - 3}$在实数范围内有意义,则实数$x$的取值范围是
x≥1
。答案:11.x≥1
解析:
要使$\sqrt{3x - 3}$在实数范围内有意义,则被开方数必须是非负数,即:
$3x - 3 \geq 0$
解不等式:
$3x \geq 3$
$x \geq 1$
$x\geq1$
$3x - 3 \geq 0$
解不等式:
$3x \geq 3$
$x \geq 1$
$x\geq1$
12. 我国南宋数学家秦九韶曾提出利用三角形的三边长求面积的公式:一个三角形的三边长分别为$a$,$b$,$c$,三角形的面积$S = \sqrt{\dfrac{1}{4}[a^{2}b^{2} - (\dfrac{a^{2} + b^{2} - c^{2}}{2})^{2}]}$。若$a = 2\sqrt{2}$,$b = 3$,$c = 1$,则$S$的值为
√2
。答案:12.√2
解析:
解:将$a = 2\sqrt{2}$,$b = 3$,$c = 1$代入公式$S = \sqrt{\dfrac{1}{4}[a^{2}b^{2} - (\dfrac{a^{2} + b^{2} - c^{2}}{2})^{2}]}$,
首先计算$a^2=(2\sqrt{2})^2=8$,$b^2=3^2=9$,$c^2=1^2=1$,
则$a^2b^2=8×9=72$,
$a^2 + b^2 - c^2=8 + 9 - 1=16$,$(\dfrac{a^2 + b^2 - c^2}{2})^2=(\dfrac{16}{2})^2=8^2=64$,
所以$\dfrac{1}{4}[a^{2}b^{2} - (\dfrac{a^{2} + b^{2} - c^{2}}{2})^{2}]=\dfrac{1}{4}(72 - 64)=\dfrac{1}{4}×8=2$,
故$S = \sqrt{2}$。
$\sqrt{2}$
首先计算$a^2=(2\sqrt{2})^2=8$,$b^2=3^2=9$,$c^2=1^2=1$,
则$a^2b^2=8×9=72$,
$a^2 + b^2 - c^2=8 + 9 - 1=16$,$(\dfrac{a^2 + b^2 - c^2}{2})^2=(\dfrac{16}{2})^2=8^2=64$,
所以$\dfrac{1}{4}[a^{2}b^{2} - (\dfrac{a^{2} + b^{2} - c^{2}}{2})^{2}]=\dfrac{1}{4}(72 - 64)=\dfrac{1}{4}×8=2$,
故$S = \sqrt{2}$。
$\sqrt{2}$
13. 若$y = \dfrac{\sqrt{x - 4} + \sqrt{4 - x}}{2} - 2$,则$(x + y)^{y} = $
1/4
。答案:13.1/4
解析:
要使$\sqrt{x - 4}$和$\sqrt{4 - x}$有意义,则$x - 4 \geq 0$且$4 - x \geq 0$,解得$x = 4$。
将$x = 4$代入$y = \dfrac{\sqrt{x - 4} + \sqrt{4 - x}}{2} - 2$,得$y = \dfrac{0 + 0}{2} - 2 = - 2$。
所以$(x + y)^y=(4 + (-2))^{-2}=2^{-2}=\dfrac{1}{2^2}=\dfrac{1}{4}$。
$\dfrac{1}{4}$
将$x = 4$代入$y = \dfrac{\sqrt{x - 4} + \sqrt{4 - x}}{2} - 2$,得$y = \dfrac{0 + 0}{2} - 2 = - 2$。
所以$(x + y)^y=(4 + (-2))^{-2}=2^{-2}=\dfrac{1}{2^2}=\dfrac{1}{4}$。
$\dfrac{1}{4}$
14. 已知$m$,$n$是正整数,且$\sqrt{m} + \sqrt{n} = \sqrt{275}$,则$m + n$的值为
187或143
。答案:14.187或143
解析:
$\sqrt{275} = 5\sqrt{11}$,设$\sqrt{m} = a\sqrt{11}$,$\sqrt{n} = b\sqrt{11}$($a$,$b$为正整数),则$a\sqrt{11} + b\sqrt{11} = 5\sqrt{11}$,即$a + b = 5$。
情况一:$a = 1$,$b = 4$,则$m = (1\sqrt{11})^2 = 11$,$n = (4\sqrt{11})^2 = 176$,$m + n = 11 + 176 = 187$。
情况二:$a = 2$,$b = 3$,则$m = (2\sqrt{11})^2 = 44$,$n = (3\sqrt{11})^2 = 99$,$m + n = 44 + 99 = 143$。
情况三:$a = 3$,$b = 2$,$a = 4$,$b = 1$与上述情况结果相同。
故$m + n$的值为187或143。
情况一:$a = 1$,$b = 4$,则$m = (1\sqrt{11})^2 = 11$,$n = (4\sqrt{11})^2 = 176$,$m + n = 11 + 176 = 187$。
情况二:$a = 2$,$b = 3$,则$m = (2\sqrt{11})^2 = 44$,$n = (3\sqrt{11})^2 = 99$,$m + n = 44 + 99 = 143$。
情况三:$a = 3$,$b = 2$,$a = 4$,$b = 1$与上述情况结果相同。
故$m + n$的值为187或143。
15. (2024·江苏盐城)如图,在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,$AC = BC = 2\sqrt{2}$,$D$是$AC$的中点,连接$BD$,将$\triangle BCD$绕点$B$旋转得到$\triangle BEF$,连接$CF$,则当$CF // AB$时,$CF$的长为

2 + √6或√6 - 2
。答案:
15.2 + √6或√6 - 2 解析:分类讨论如下:①如图①,当点F在点C的右侧时,过点B作BG⊥CF于点G,则∠BGC = ∠BGF = 90°.由题意,得BF = BD.因为AC = BC = 2√2,D是AC的中点,所以CD = 1/2AC = √2.又∠ACB = 90°,所以△ABC是等腰直角三角形,即∠CAB = ∠ABC = 45°.在
Rt△BCD中,由勾股定理,得BD = √(CD² + BC²) = √10,所以BF = BD = √10.因为CF//AB,所以∠BCG = ∠ABC = 45°.又∠BCG + ∠CBG = 90°,所以∠CBG = ∠BCG = 45°.所以CG = BG.在Rt△BCG中,由勾股定理,得BC² = CG² + BG²,所以CG = BG = √(BC²/2) = 2.在Rt△BFG中,由勾股定理,得GF = √(BF² - BG²) = √6.则CF = CG + GF = 2 + √6;②如图②,当点F在点C的左侧时,过点B作BG⊥CF,交CF的反向延长线于点G,则∠BGC = ∠BGF = 90°.同理,得CG = 2,GF = √6.所以CF = GF - CG = √6 - 2.综上,当CF//AB时,CF的长为2 + √6或√6 - 2.

15.2 + √6或√6 - 2 解析:分类讨论如下:①如图①,当点F在点C的右侧时,过点B作BG⊥CF于点G,则∠BGC = ∠BGF = 90°.由题意,得BF = BD.因为AC = BC = 2√2,D是AC的中点,所以CD = 1/2AC = √2.又∠ACB = 90°,所以△ABC是等腰直角三角形,即∠CAB = ∠ABC = 45°.在
Rt△BCD中,由勾股定理,得BD = √(CD² + BC²) = √10,所以BF = BD = √10.因为CF//AB,所以∠BCG = ∠ABC = 45°.又∠BCG + ∠CBG = 90°,所以∠CBG = ∠BCG = 45°.所以CG = BG.在Rt△BCG中,由勾股定理,得BC² = CG² + BG²,所以CG = BG = √(BC²/2) = 2.在Rt△BFG中,由勾股定理,得GF = √(BF² - BG²) = √6.则CF = CG + GF = 2 + √6;②如图②,当点F在点C的左侧时,过点B作BG⊥CF,交CF的反向延长线于点G,则∠BGC = ∠BGF = 90°.同理,得CG = 2,GF = √6.所以CF = GF - CG = √6 - 2.综上,当CF//AB时,CF的长为2 + √6或√6 - 2.
16. 若有理数$a$,$b$满足$\sqrt{\dfrac{21}{4} - 3\sqrt{3}} = a + \sqrt{b}$,且$\sqrt{b}$为最简根式,则$a + b = $
3/2
。答案:16.3/2 解析:因为√(21/4) - 3√3 = a + √b,所以√(21/4) - 3√3 = (a + √b)²,即a² + 2a√b + b = 21/4 - 3√3.又a,b为有理数且√b为最简根式,所以
{
2a = -3,
a² + b = 21/4,
解得a = -3/2,则a + b = 3/2.
b = 3.
}
{
2a = -3,
a² + b = 21/4,
解得a = -3/2,则a + b = 3/2.
b = 3.
}
17. (2025·江苏南京期末)若$\sqrt{x} + \sqrt{\dfrac{1}{x}} = \sqrt{6}$,$x \geqslant 1$,则$\sqrt{x} - \sqrt{\dfrac{1}{x}} = $
√2
。答案:17.√2 解析:因为x≥1,所以√x - √(1/x)≥0.又√x + √(1/x) = √6,所以(√x + √(1/x))² = 6,即x + 1/x + 2 = 6.所以x + 1/x = 4.所以(√x - √(1/x))² = x + 1/x - 2 = 2,即√x - √(1/x) = √2.
解析:
因为$x \geqslant 1$,所以$\sqrt{x} - \sqrt{\dfrac{1}{x}} \geqslant 0$。
已知$\sqrt{x} + \sqrt{\dfrac{1}{x}} = \sqrt{6}$,两边平方得$(\sqrt{x} + \sqrt{\dfrac{1}{x}})^2 = (\sqrt{6})^2$,即$x + 2\sqrt{x} · \sqrt{\dfrac{1}{x}} + \dfrac{1}{x} = 6$,化简得$x + \dfrac{1}{x} + 2 = 6$,所以$x + \dfrac{1}{x} = 4$。
则$(\sqrt{x} - \sqrt{\dfrac{1}{x}})^2 = x - 2\sqrt{x} · \sqrt{\dfrac{1}{x}} + \dfrac{1}{x} = x + \dfrac{1}{x} - 2 = 4 - 2 = 2$,所以$\sqrt{x} - \sqrt{\dfrac{1}{x}} = \sqrt{2}$。
$\sqrt{2}$
已知$\sqrt{x} + \sqrt{\dfrac{1}{x}} = \sqrt{6}$,两边平方得$(\sqrt{x} + \sqrt{\dfrac{1}{x}})^2 = (\sqrt{6})^2$,即$x + 2\sqrt{x} · \sqrt{\dfrac{1}{x}} + \dfrac{1}{x} = 6$,化简得$x + \dfrac{1}{x} + 2 = 6$,所以$x + \dfrac{1}{x} = 4$。
则$(\sqrt{x} - \sqrt{\dfrac{1}{x}})^2 = x - 2\sqrt{x} · \sqrt{\dfrac{1}{x}} + \dfrac{1}{x} = x + \dfrac{1}{x} - 2 = 4 - 2 = 2$,所以$\sqrt{x} - \sqrt{\dfrac{1}{x}} = \sqrt{2}$。
$\sqrt{2}$
18. 已知实数$a$,$b$满足$(a + \sqrt{a^{2} - 2025}) · (b + \sqrt{b^{2} - 2025}) = 2025$,则$2025a^{2} - 2024ab + a - b - 2024 = $
1
。答案:18.1 解析:因为(a + √(a² - 2025))·(b + √(b² - 2025)) = 2025,所以a + √(a² - 2025) = 2025/(b + √(b² - 2025)) = b - √(b² - 2025),b + √(b² - 2025) = 2025/(a + √(a² - 2025)) = a - √(a² - 2025).两式相加,化简,得a = b.所以(a + √(a² - 2025))² = 2025.所以a² + a² - 2025 + 2a√(a² - 2025) = 2025,即√(a² - 2025)(√(a² - 2025) + a) = 0.又√(a² - 2025) + a≠0,所以√(a² - 2025) = 0,解得a² = 2025.则原式 = a² - 2024 = 1.
解析:
因为$(a + \sqrt{a^{2} - 2025}) · (b + \sqrt{b^{2} - 2025}) = 2025$,所以$a + \sqrt{a^{2} - 2025} = \frac{2025}{b + \sqrt{b^{2} - 2025}} = b - \sqrt{b^{2} - 2025}$,$b + \sqrt{b^{2} - 2025} = \frac{2025}{a + \sqrt{a^{2} - 2025}} = a - \sqrt{a^{2} - 2025}$。两式相加得$a + b + \sqrt{a^{2} - 2025} + \sqrt{b^{2} - 2025} = a + b - \sqrt{a^{2} - 2025} - \sqrt{b^{2} - 2025}$,化简得$\sqrt{a^{2} - 2025} + \sqrt{b^{2} - 2025} = 0$,故$a = b$。
将$a = b$代入原式得$(a + \sqrt{a^{2} - 2025})^{2} = 2025$,展开得$a^{2} + a^{2} - 2025 + 2a\sqrt{a^{2} - 2025} = 2025$,即$2a\sqrt{a^{2} - 2025} + 2a^{2} - 4050 = 0$,化简得$\sqrt{a^{2} - 2025}(a + \sqrt{a^{2} - 2025}) = 0$。因为$a + \sqrt{a^{2} - 2025} \neq 0$,所以$\sqrt{a^{2} - 2025} = 0$,解得$a^{2} = 2025$。
则$2025a^{2} - 2024ab + a - b - 2024 = 2025a^{2} - 2024a^{2} + 0 - 2024 = a^{2} - 2024 = 2025 - 2024 = 1$。
1
将$a = b$代入原式得$(a + \sqrt{a^{2} - 2025})^{2} = 2025$,展开得$a^{2} + a^{2} - 2025 + 2a\sqrt{a^{2} - 2025} = 2025$,即$2a\sqrt{a^{2} - 2025} + 2a^{2} - 4050 = 0$,化简得$\sqrt{a^{2} - 2025}(a + \sqrt{a^{2} - 2025}) = 0$。因为$a + \sqrt{a^{2} - 2025} \neq 0$,所以$\sqrt{a^{2} - 2025} = 0$,解得$a^{2} = 2025$。
则$2025a^{2} - 2024ab + a - b - 2024 = 2025a^{2} - 2024a^{2} + 0 - 2024 = a^{2} - 2024 = 2025 - 2024 = 1$。
1
19. (10 分)计算:
(1)(2025·甘肃武威)$\sqrt{12} - \sqrt{6} × \dfrac{1}{\sqrt{2}}$;
(2)$\sqrt{24} - \sqrt{0.5} - 2(\dfrac{1}{3}\sqrt{54} - \sqrt{\dfrac{1}{8}})$;
(3)(2024·上海改编)$\vert 1 - \sqrt{3}\vert + \sqrt{24} + \dfrac{1}{2 + \sqrt{3}} - (1 - \sqrt{3})^{0}$;
(4)$(\dfrac{3}{2}\sqrt{1\dfrac{2}{3}} - \sqrt{1\dfrac{1}{4}})^{2}$;
(5)$(6\sqrt{\dfrac{x}{8}} - 2x\sqrt{\dfrac{1}{2x}} + \sqrt{32x}) ÷ 3\sqrt{2x}$。
(1)(2025·甘肃武威)$\sqrt{12} - \sqrt{6} × \dfrac{1}{\sqrt{2}}$;
(2)$\sqrt{24} - \sqrt{0.5} - 2(\dfrac{1}{3}\sqrt{54} - \sqrt{\dfrac{1}{8}})$;
(3)(2024·上海改编)$\vert 1 - \sqrt{3}\vert + \sqrt{24} + \dfrac{1}{2 + \sqrt{3}} - (1 - \sqrt{3})^{0}$;
(4)$(\dfrac{3}{2}\sqrt{1\dfrac{2}{3}} - \sqrt{1\dfrac{1}{4}})^{2}$;
(5)$(6\sqrt{\dfrac{x}{8}} - 2x\sqrt{\dfrac{1}{2x}} + \sqrt{32x}) ÷ 3\sqrt{2x}$。
答案:19.(1)原式 = 2√3 - √3 = √3.
(2)原式 = 2√6 - (√2/2) - (2/3)×3√6 + 2×(√2/4) = 0.
(3)原式 = √3 - 1 + 2√6 + 2 - √3 - 1 = 2√6.
(4)原式 = (3/(2√3) - √5/4)² = (√15/2 - √5/2)² = 15/4 + 5/4 - 5√3/2 = 5 - 5√3/2.
(5)原式 = (6×(√(2x)/4) - √(2x) + 4√(2x))÷3√(2x) = (9√(2x)/2)÷3√(2x) = 3/2.
(2)原式 = 2√6 - (√2/2) - (2/3)×3√6 + 2×(√2/4) = 0.
(3)原式 = √3 - 1 + 2√6 + 2 - √3 - 1 = 2√6.
(4)原式 = (3/(2√3) - √5/4)² = (√15/2 - √5/2)² = 15/4 + 5/4 - 5√3/2 = 5 - 5√3/2.
(5)原式 = (6×(√(2x)/4) - √(2x) + 4√(2x))÷3√(2x) = (9√(2x)/2)÷3√(2x) = 3/2.