20. (6分)新素养应用意识如图,某学习小组为了测量校园内一棵小树CD的高度,用长为1m的竹竿AB作测量工具,移动竹竿,使竹竿影子的顶端、树影子的顶端落在水平地面上的同一点E,且点E,A,C在同一条直线上.已知AE = 3m,AC = 9m,求这棵小树的高度.

答案:20.由题意,得AB//CD,所以△ABE∽△CDE,所以$\frac{AB}{CD}=\frac{AE}{CE}$.因为AE = 3m,AC = 9m,所以CE = AE + AC = 12m,所以$\frac{AE}{CE}=\frac{1}{4}$.因为AB = 1m,所以CD = 4m.故这棵小树的高度为4m.
解析:
解:由题意,得$AB // CD$,所以$\triangle ABE ∼ \triangle CDE$,因此$\frac{AB}{CD} = \frac{AE}{CE}$。
因为$AE = 3\ \mathrm{m}$,$AC = 9\ \mathrm{m}$,所以$CE = AE + AC = 3 + 9 = 12\ \mathrm{m}$,则$\frac{AE}{CE} = \frac{3}{12} = \frac{1}{4}$。
又因为$AB = 1\ \mathrm{m}$,所以$\frac{1}{CD} = \frac{1}{4}$,解得$CD = 4\ \mathrm{m}$。
故这棵小树的高度为$4\ \mathrm{m}$。
因为$AE = 3\ \mathrm{m}$,$AC = 9\ \mathrm{m}$,所以$CE = AE + AC = 3 + 9 = 12\ \mathrm{m}$,则$\frac{AE}{CE} = \frac{3}{12} = \frac{1}{4}$。
又因为$AB = 1\ \mathrm{m}$,所以$\frac{1}{CD} = \frac{1}{4}$,解得$CD = 4\ \mathrm{m}$。
故这棵小树的高度为$4\ \mathrm{m}$。
21. (8分)如图,矩形ABCD的边AD = 8,将矩形ABCD折叠,使得顶点B落在边CD上的点P处,折痕与边BC交于点E.
(1)求证:△ECP∽△PDA;
(2)若△ECP与△PDA面积的比为1∶4,求边AB的长.

(1)求证:△ECP∽△PDA;
(2)若△ECP与△PDA面积的比为1∶4,求边AB的长.
答案:21.(1)因为四边形ABCD是矩形,所以∠B = ∠C = ∠D = 90°,所以∠CEP + ∠CPE = 90°.由折叠的性质,得∠APE = ∠B = 90°,所以∠DPA + ∠CPE = 180° - ∠APE = 90°,所以∠CEP = ∠DPA,所以△ECP∽△PDA.
(2)因为四边形ABCD是矩形,所以AB = CD,BC = AD = 8.因为△ECP∽△PDA,△ECP与△PDA面积的比为1:4,所以$\frac{CE}{DP}=\frac{PC}{AD}=\frac{1}{2}$,所以PC = 4.由折叠的性质,得PE = BE.设PE = BE = x,则CE = BC - BE = 8 - x.因为$CE^{2}+PC^{2}=PE^{2}$,所以$(8 - x)^{2}+4^{2}=x^{2}$,解得x = 5,所以BE = 5,CE = 3,所以DP = 6,所以AB = CD = DP + PC = 10.
(2)因为四边形ABCD是矩形,所以AB = CD,BC = AD = 8.因为△ECP∽△PDA,△ECP与△PDA面积的比为1:4,所以$\frac{CE}{DP}=\frac{PC}{AD}=\frac{1}{2}$,所以PC = 4.由折叠的性质,得PE = BE.设PE = BE = x,则CE = BC - BE = 8 - x.因为$CE^{2}+PC^{2}=PE^{2}$,所以$(8 - x)^{2}+4^{2}=x^{2}$,解得x = 5,所以BE = 5,CE = 3,所以DP = 6,所以AB = CD = DP + PC = 10.
22. (8分)(2025·新疆改编)如图,在等腰直角三角形ABC中,∠A = 90°,BC = 4,AD = aBN,M是AB的中点,D,N分别是边AC,BC上的动点.
(1)当D,N分别是AC,BC的中点时,求a的值;
(2)若当a = $ \sqrt{2} $时,以C,D,N为顶点的三角形与△BMN相似,求BN的长.

(1)当D,N分别是AC,BC的中点时,求a的值;
(2)若当a = $ \sqrt{2} $时,以C,D,N为顶点的三角形与△BMN相似,求BN的长.
答案:22.(1)因为∠A = 90°,AB = AC,所以$BC=\sqrt{AB^{2}+AC^{2}}=\sqrt{2}AC$,所以$AC=\frac{\sqrt{2}}{2}BC$.因为BC = 4,所以$AC = 2\sqrt{2}$.因为D是AC的中点,所以$AD=\frac{1}{2}AC=\sqrt{2}$.因为N是BC的中点,所以$BN=\frac{1}{2}BC=2$,所以$\frac{AD}{BN}=\frac{\sqrt{2}}{2}$,所以$AD=\frac{\sqrt{2}}{2}BN$,即a的值为$\frac{\sqrt{2}}{2}$.
(2)当$a=\sqrt{2}$时,$AD=\sqrt{2}BN$.因为M是AB的中点,$AB = AC = 2\sqrt{2}$,所以$BM=\frac{1}{2}AC=\sqrt{2}$.设BN = x,则$AD=\sqrt{2}x$,所以$CD = AC - AD = 2\sqrt{2}-\sqrt{2}x$.因为BC = 4,所以CN = BC - BN = 4 - x.因为以C,D,N为顶点的三角形与△BMN相似,且∠B = ∠C,所以分类讨论如下:①若△CDN∽△BMN,则$\frac{CD}{BM}=\frac{CN}{BN}$,所以$\frac{2\sqrt{2}-\sqrt{2}x}{\sqrt{2}}=\frac{4 - x}{x}$,该方程无解;②若△CDN∽△BNM,则$\frac{CD}{BN}=\frac{CN}{BM}$,所以$\frac{2\sqrt{2}-\sqrt{2}x}{x}=\frac{4 - x}{\sqrt{2}}$,解得$x = 3 - \sqrt{5}$($x = 3 + \sqrt{5}$不合题意,舍去).综上所述,BN的长为$3 - \sqrt{5}$.
(2)当$a=\sqrt{2}$时,$AD=\sqrt{2}BN$.因为M是AB的中点,$AB = AC = 2\sqrt{2}$,所以$BM=\frac{1}{2}AC=\sqrt{2}$.设BN = x,则$AD=\sqrt{2}x$,所以$CD = AC - AD = 2\sqrt{2}-\sqrt{2}x$.因为BC = 4,所以CN = BC - BN = 4 - x.因为以C,D,N为顶点的三角形与△BMN相似,且∠B = ∠C,所以分类讨论如下:①若△CDN∽△BMN,则$\frac{CD}{BM}=\frac{CN}{BN}$,所以$\frac{2\sqrt{2}-\sqrt{2}x}{\sqrt{2}}=\frac{4 - x}{x}$,该方程无解;②若△CDN∽△BNM,则$\frac{CD}{BN}=\frac{CN}{BM}$,所以$\frac{2\sqrt{2}-\sqrt{2}x}{x}=\frac{4 - x}{\sqrt{2}}$,解得$x = 3 - \sqrt{5}$($x = 3 + \sqrt{5}$不合题意,舍去).综上所述,BN的长为$3 - \sqrt{5}$.