零五网 全部参考答案 亮点给力提优课时作业本答案 2026年亮点给力提优课时作业本九年级数学下册苏科版 第12页解析答案
25. (8分)新素养有一块直角三角形荒地,其直角边AB的长为5m,BC的长为12m.现要在其中建一个尽可能大的正方形花坛,请甲、乙两名同学进行设计.甲同学设计的方案如图①所示,乙同学设计的方案如图②所示.请运用学过的知识说明哪名同学的设计方案符合要求.


答案:25.由题意,得AB = 5m,BC = 12m,∠B = 90°,所以$AC=\sqrt{AB^{2}+BC^{2}}=13m$.甲同学的方案:设正方形BDEF的边长为xm,则BD = ED = xm.因为DE//AB,所以△CDE∽△CBA,所以$\frac{DC}{BC}=\frac{ED}{AB}$.因为DC = BC - BD = (12 - x)m,所以$\frac{12 - x}{12}=\frac{x}{5}$,解得$x=\frac{60}{17}$,即甲同学的方案中正方形的边长为$\frac{60}{17}$m.乙同学的方案:设正方形KMNG的边长为ym,则KM = MN = ym.在题图②中,过点B作BH⊥AC于点H,交KM于点P,则$S_{△ABC}=\frac{1}{2}AB·BC=\frac{1}{2}AC·BH$,所以$BH=\frac{AB·BC}{AC}=\frac{60}{13}$m.因为KM//AC,所以△BKM∽△BAC,BP⊥KM,所以BP,BH分别是△BKM和△BAC的对应高,所以$\frac{BP}{BH}=\frac{KM}{AC}$.因为PH = MN = ym,所以$BP = BH - PH = (\frac{60}{13}-y)$m,所以$\frac{\frac{60}{13}-y}{\frac{60}{13}}=\frac{y}{13}$,解得$y=\frac{780}{229}$,即乙同学的方案中正方形的边长为$\frac{780}{229}$m.因为$\frac{60}{17}>\frac{780}{229}$,所以按题图①设计出的正方形的面积较大.综上所述,甲同学的设计方案符合要求.
解析:
解:由题意,得$AB = 5\,\mathrm{m}$,$BC = 12\,\mathrm{m}$,$\angle B = 90°$,
$\therefore AC=\sqrt{AB^{2}+BC^{2}}=\sqrt{5^{2}+12^{2}}=13\,\mathrm{m}$.
甲同学的方案(图①):
设正方形$BDEF$的边长为$x\,\mathrm{m}$,则$BD = ED = x\,\mathrm{m}$.
$\because DE// AB$,$\therefore\triangle CDE\backsim\triangle CBA$,
$\therefore\frac{DC}{BC}=\frac{ED}{AB}$.
$\because DC = BC - BD=(12 - x)\,\mathrm{m}$,
$\therefore\frac{12 - x}{12}=\frac{x}{5}$,解得$x=\frac{60}{17}$.
乙同学的方案(图②):
设正方形$KMNG$的边长为$y\,\mathrm{m}$,过点$B$作$BH⊥ AC$于点$H$,交$KM$于点$P$.
$\because S_{\triangle ABC}=\frac{1}{2}AB· BC=\frac{1}{2}AC· BH$,
$\therefore BH=\frac{AB· BC}{AC}=\frac{5×12}{13}=\frac{60}{13}\,\mathrm{m}$.
$\because KM// AC$,$\therefore\triangle BKM\backsim\triangle BAC$,
$\therefore\frac{BP}{BH}=\frac{KM}{AC}$.
$\because PH = MN = y\,\mathrm{m}$,$\therefore BP = BH - PH=(\frac{60}{13}-y)\,\mathrm{m}$,
$\therefore\frac{\frac{60}{13}-y}{\frac{60}{13}}=\frac{y}{13}$,解得$y=\frac{780}{229}$.
$\because\frac{60}{17}=\frac{60×13}{17×13}=\frac{780}{221}$,且$\frac{780}{221}>\frac{780}{229}$,
$\therefore x>y$.
答:甲同学的设计方案符合要求.
26. (12分)(2025·江苏盐城模拟)在四边形ABCD中,AD//BC,∠ABC = 90°,AD = CD,O是对角线AC的中点,连接BO并延长,交边CD或边AD于点E.
(1)如图,当点E在边CD上时,
① 求证:△DAC∽△OBC;
② 若BE⊥CD,求$ \frac{AD}{BC} $的值;
(2)若DE = 2,OE = 3,求CD的长.


答案:
26.(1)①因为AD//BC,所以∠DAC = ∠OCB.因为AD = CD,所以∠DAC = ∠DCA,所以∠DCA = ∠OCB.因为O是AC的中点,所以$OB = OC=\frac{1}{2}AC$,所以∠OBC = ∠OCB,所以∠DAC = ∠OBC,所以△DAC∽△OBC.
②过点D作DF⊥BC于点F,则∠BFD = ∠CFD = 90°.设AD = CD = 2m.因为AD//BC,∠ABC = 90°,所以∠BAD = 180° - ∠ABC = 90°,所以四边形ABFD是矩形,所以BF = AD = 2m.因为BE⊥CD,所以∠BEC = 90°,所以∠OBC + ∠OCB + ∠DCA = 90°.因为∠OBC = ∠OCB = ∠DCA = $\frac{1}{3}×90° = 30°$,所以∠DCF = ∠OCB + ∠DCA = 60°,所以∠CDF = 90° - ∠DCF = 30°,所以$CF=\frac{1}{2}CD = m$,所以BC = BF + CF = 3m,所以$\frac{AD}{BC}=\frac{2}{3}$.
(2)设AD = CD = x.分类讨论如下:如图①,当点E在边AD上时,连接CE.因为AD//BC,所以∠OAE = ∠OCB,∠OEA = ∠OBC.因为O是AC的中点,所以OA = OC,所以△OAE≌△OCB,所以OE = OB,所以四边形ABCE是平行四边形.因为∠ABC = 90°,所以四边形ABCE是矩形,所以∠AEC = 90°,AC = BE.因为OE = 3,所以AC = BE = 2OE = 6.因为DE = 2,所以AE = AD - DE = x - 2.因为∠DEC = 180° - ∠AEC = 90°,所以$DE^{2}+CE^{2}=CD^{2}$,又$AE^{2}+CE^{2}=AC^{2}$,所以$CD^{2}-DE^{2}=AC^{2}-AE^{2}$,所以$x^{2}-2^{2}=6^{2}-(x - 2)^{2}$,解得$x_1 = 1+\sqrt{19}$,$x_2 = 1 - \sqrt{19}$(不合题意,舍去),则CD的长为$1+\sqrt{19}$;如图②,当点E在边CD上时,CE = CD - DE = x - 2.因为△DAC∽△OBC,所以$\frac{CD}{OC}=\frac{AC}{BC}$,所以$\frac{CD}{AC}=\frac{OC}{BC}$.因为∠OCE = ∠CBE,∠OEC = ∠CEB,所以△OCE∽△CBE,所以$\frac{CE}{BE}=\frac{OE}{CE}=\frac{OC}{BC}$.设OB = OC = y,则BE = OB + OE = y + 3,AC = 2OC = 2y,所以$\frac{x - 2}{y + 3}=\frac{3}{x - 2}=\frac{x}{2y}$,解得$x_1 = 3+\sqrt{19}$,$x_2 = 3 - \sqrt{19}$(不合题意,舍去),则CD的长为$3+\sqrt{19}$.综上所述,CD的长为$1+\sqrt{19}$或$3+\sqrt{19}$.
上一页 下一页