1. (3分)如图,在边长为1的小正方形网格中,点A,B,C,E在格点上,连接AE,BC,过点A作AD⊥BC于点D,连接DE,则tan∠AED的值是(

A.$\frac{2\sqrt{5}}{5}$
B.2
C.$\frac{\sqrt{5}}{5}$
D.$\frac{1}{2}$
D
)A.$\frac{2\sqrt{5}}{5}$
B.2
C.$\frac{\sqrt{5}}{5}$
D.$\frac{1}{2}$
答案:1.D
解析:
解:以点C为原点,建立平面直角坐标系,
则点A(0,1),B(4,2),C(0,0),E(2,3)。
直线BC的解析式为$y=\frac{1}{2}x$,
∵AD⊥BC,
∴直线AD的斜率为-2,
直线AD的解析式为$y-1=-2x$,即$y=-2x+1$。
联立$\begin{cases}y=\frac{1}{2}x\\y=-2x+1\end{cases}$,解得$D(\frac{2}{5},\frac{1}{5})$。
$AE$的长度:$\sqrt{(2-0)^2+(3-1)^2}=2\sqrt{2}$,
$DE$的长度:$\sqrt{(2-\frac{2}{5})^2+(3-\frac{1}{5})^2}=\frac{8\sqrt{2}}{5}$,
$AD$的长度:$\sqrt{(\frac{2}{5}-0)^2+(\frac{1}{5}-1)^2}=\frac{2\sqrt{5}}{5}$。
在$\triangle AED$中,由余弦定理得$\cos\angle AED=\frac{AE^2+DE^2-AD^2}{2· AE· DE}=\frac{4\sqrt{5}}{5}$,
则$\sin\angle AED=\sqrt{1-(\frac{4\sqrt{5}}{5})^2}=\frac{\sqrt{5}}{5}$,
$\tan\angle AED=\frac{\sin\angle AED}{\cos\angle AED}=\frac{1}{2}$。
答案:D
则点A(0,1),B(4,2),C(0,0),E(2,3)。
直线BC的解析式为$y=\frac{1}{2}x$,
∵AD⊥BC,
∴直线AD的斜率为-2,
直线AD的解析式为$y-1=-2x$,即$y=-2x+1$。
联立$\begin{cases}y=\frac{1}{2}x\\y=-2x+1\end{cases}$,解得$D(\frac{2}{5},\frac{1}{5})$。
$AE$的长度:$\sqrt{(2-0)^2+(3-1)^2}=2\sqrt{2}$,
$DE$的长度:$\sqrt{(2-\frac{2}{5})^2+(3-\frac{1}{5})^2}=\frac{8\sqrt{2}}{5}$,
$AD$的长度:$\sqrt{(\frac{2}{5}-0)^2+(\frac{1}{5}-1)^2}=\frac{2\sqrt{5}}{5}$。
在$\triangle AED$中,由余弦定理得$\cos\angle AED=\frac{AE^2+DE^2-AD^2}{2· AE· DE}=\frac{4\sqrt{5}}{5}$,
则$\sin\angle AED=\sqrt{1-(\frac{4\sqrt{5}}{5})^2}=\frac{\sqrt{5}}{5}$,
$\tan\angle AED=\frac{\sin\angle AED}{\cos\angle AED}=\frac{1}{2}$。
答案:D
2. (3分)新素养 几何直观 如图①,在△ABC中,AB=AC=4,射线AN//BC,D为AN上一点,过点D作DE//AB,交射线BC于点E. 若CE的长y与AD的长x之间的关系可用图②中的函数图像表示,其中点M的坐标为(8,2),则∠B的正切值为(

A.$\frac{\sqrt{7}}{3}$
B.$\frac{3}{4}$
C.$\frac{1}{4}$
D.$\frac{\sqrt{7}}{4}$
A
)A.$\frac{\sqrt{7}}{3}$
B.$\frac{3}{4}$
C.$\frac{1}{4}$
D.$\frac{\sqrt{7}}{4}$
答案:2.A
解析:
解:
∵AN//BC,DE//AB,
∴四边形ABED是平行四边形,
∴AD=BE=x,AB=DE=4.
由图②知,当x=8时,y=2,即CE=2.
设BC=a,当点E在BC延长线上时,BE=BC+CE,
∴x=a+y,即8=a+2,解得a=6,
∴BC=6.
过A作AH⊥BC于H,
∵AB=AC=4,BC=6,
∴BH=CH=3.
在Rt△ABH中,
AH=$\sqrt{AB^2-BH^2}=\sqrt{4^2-3^2}=\sqrt{7}$.
∴tan∠B=$\frac{AH}{BH}=\frac{\sqrt{7}}{3}$.
答案:A
∵AN//BC,DE//AB,
∴四边形ABED是平行四边形,
∴AD=BE=x,AB=DE=4.
由图②知,当x=8时,y=2,即CE=2.
设BC=a,当点E在BC延长线上时,BE=BC+CE,
∴x=a+y,即8=a+2,解得a=6,
∴BC=6.
过A作AH⊥BC于H,
∵AB=AC=4,BC=6,
∴BH=CH=3.
在Rt△ABH中,
AH=$\sqrt{AB^2-BH^2}=\sqrt{4^2-3^2}=\sqrt{7}$.
∴tan∠B=$\frac{AH}{BH}=\frac{\sqrt{7}}{3}$.
答案:A
3. (3分)如图,在平面直角坐标系中,O是原点,点A的坐标为(0,8),点B的坐标为(0,2),E为x轴正半轴上一动点. 若tan∠AEB=m,则m的取值范围是(

A.$0 < m \leq \frac{3}{4}$
B.$0 < m \leq \frac{4}{5}$
C.$\frac{1}{2} < m < \frac{3}{4}$
D.$0 < m \leq \frac{3}{5}$
A
)A.$0 < m \leq \frac{3}{4}$
B.$0 < m \leq \frac{4}{5}$
C.$\frac{1}{2} < m < \frac{3}{4}$
D.$0 < m \leq \frac{3}{5}$
答案:
3.A 解析:如图,当$\triangle ABE$的外接圆$\odot O'$与$x$轴相切于点$E$时,$\angle AEB$最大,则$O'E⊥ x$轴,所以$\angle O'EO = 90°$.过点$O'$作$O'D⊥ y$轴于点$D$,则$AD = BD = \frac{1}{2}AB$,$\angle O'DA = \angle O'DO = 90°$.又$\angle DOE = 90°$,所以四边形$ODO'E$是矩形,所以$O'E = OD$.因为$A(0,8)$,$B(0,2)$,所以$OA = 8$,$OB = 2$,所以$AB = OA - OB = 6$,所以$AD = BD = 3$,所以$O'A = O'E = OD = OB + BD = 5$,所以$O'D = \sqrt{O'A^2 - AD^2} = 4$.因为$\angle AEB = \angle AO'D$,所以$\tan\angle AEB = \tan\angle AO'D = \frac{AD}{O'D} = \frac{3}{4}$,所以$m$的最大值是$\frac{3}{4}$.又$m > 0$,所以$m$的取值范围是$0 < m \leq \frac{3}{4}$.

3.A 解析:如图,当$\triangle ABE$的外接圆$\odot O'$与$x$轴相切于点$E$时,$\angle AEB$最大,则$O'E⊥ x$轴,所以$\angle O'EO = 90°$.过点$O'$作$O'D⊥ y$轴于点$D$,则$AD = BD = \frac{1}{2}AB$,$\angle O'DA = \angle O'DO = 90°$.又$\angle DOE = 90°$,所以四边形$ODO'E$是矩形,所以$O'E = OD$.因为$A(0,8)$,$B(0,2)$,所以$OA = 8$,$OB = 2$,所以$AB = OA - OB = 6$,所以$AD = BD = 3$,所以$O'A = O'E = OD = OB + BD = 5$,所以$O'D = \sqrt{O'A^2 - AD^2} = 4$.因为$\angle AEB = \angle AO'D$,所以$\tan\angle AEB = \tan\angle AO'D = \frac{AD}{O'D} = \frac{3}{4}$,所以$m$的最大值是$\frac{3}{4}$.又$m > 0$,所以$m$的取值范围是$0 < m \leq \frac{3}{4}$.
4. (2023·江苏常州·3分)上分点一 如图,在Rt△ABC中,∠A=90°,点D在边AB上,连接CD. 若BD=CD,$\frac{AD}{BD}=\frac{1}{3}$,则tan B=

$\frac{\sqrt{2}}{2}$
.答案:4.$\frac{\sqrt{2}}{2}$
解析:
解:设 $AD = x$,则 $BD = 3x$,$AB = AD + BD = 4x$。
因为 $BD = CD$,所以 $CD = 3x$。
在 $Rt\triangle ACD$ 中,$AC = \sqrt{CD^2 - AD^2} = \sqrt{(3x)^2 - x^2} = \sqrt{9x^2 - x^2} = \sqrt{8x^2} = 2\sqrt{2}x$。
在 $Rt\triangle ABC$ 中,$\tan B = \frac{AC}{AB} = \frac{2\sqrt{2}x}{4x} = \frac{\sqrt{2}}{2}$。
$\frac{\sqrt{2}}{2}$
因为 $BD = CD$,所以 $CD = 3x$。
在 $Rt\triangle ACD$ 中,$AC = \sqrt{CD^2 - AD^2} = \sqrt{(3x)^2 - x^2} = \sqrt{9x^2 - x^2} = \sqrt{8x^2} = 2\sqrt{2}x$。
在 $Rt\triangle ABC$ 中,$\tan B = \frac{AC}{AB} = \frac{2\sqrt{2}x}{4x} = \frac{\sqrt{2}}{2}$。
$\frac{\sqrt{2}}{2}$
5. (2025·江苏泰州模拟·3分)如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个内角为60°,A,B,C都是格点,则tan∠ABC=

$\frac{\sqrt{3}}{9}$
.答案:5.$\frac{\sqrt{3}}{9}$
6. (3分)如图,在△ABC中,∠BAC=90°,AB>AC,△ABD,△BCF,△CAE均为等腰直角三角形,连接DF,EF. 若△DEF与△ABC面积的比为5:2,则tan∠ABC的值是

$\frac{3 - \sqrt{5}}{2}$
.答案:
6.$\frac{3 - \sqrt{5}}{2}$ 解析:如图,作$\triangle ABC$的外接圆,连接$AF$.因为$\angle BAC = 90°$,所以$BC$为$\triangle ABC$外接圆的直径.因为$\triangle ABD$,$\triangle BCF$,$\triangle CAE$均为等腰直角三角形,所以$\angle ADB = \angle BFC = \angle AEC = 90°$,$\angle BAD = \angle EAC = \angle FBC = \angle FCB = 45°$,所以点$F$在$\triangle ABC$的外接圆上,所以$\angle BAF = \angle FCB = 45°$,所以$\angle DAF = \angle BAD + \angle BAF = 90°$,所以$\angle ADB + \angle DAF = 180°$,$\angle DAF = \angle AEC$,所以$BD// AF// CE$,所以$S_{\triangle ABF} = S_{\triangle ADF}$,$S_{\triangle ACF} = S_{\triangle AEF}$,所以$S_{\triangle DEF} = S_{\triangle ADF} + S_{\triangle AEF} = S_{\triangle ABF} + S_{\triangle ACF} = S_{四边形ABFC} = S_{\triangle ABC} + S_{\triangle BCF}$.因为$S_{\triangle DEF}:S_{\triangle ABC} = 5:2$,所以$S_{\triangle DEF} = \frac{5}{2}S_{\triangle ABC}$,所以$\frac{5}{2}S_{\triangle ABC} = S_{\triangle ABC} + S_{\triangle BCF}$.设$AB = m$,$AC = n(m > n)$,则$S_{\triangle ABC} = \frac{1}{2}mn$,$BC^2 = AB^2 + AC^2 = m^2 + n^2$,所以$BF^2 + CF^2 = BC^2 = m^2 + n^2$.因为$BF = CF$,所以$2CF^2 = m^2 + n^2$,所以$S_{\triangle BCF} = \frac{1}{2}BF· CF = \frac{1}{2}CF^2 = \frac{1}{4}(m^2 + n^2)$,所以$\frac{1}{2}mn = \frac{1}{6}(m^2 + n^2)$,所以$n^2 - 3mn + m^2 = 0$,所以$n = \frac{3 - \sqrt{5}}{2}m(n = \frac{3 + \sqrt{5}}{2}m$不合题意,舍去$)$,所以$\tan\angle ABC = \frac{AC}{AB} = \frac{n}{m} = \frac{3 - \sqrt{5}}{2}$.

6.$\frac{3 - \sqrt{5}}{2}$ 解析:如图,作$\triangle ABC$的外接圆,连接$AF$.因为$\angle BAC = 90°$,所以$BC$为$\triangle ABC$外接圆的直径.因为$\triangle ABD$,$\triangle BCF$,$\triangle CAE$均为等腰直角三角形,所以$\angle ADB = \angle BFC = \angle AEC = 90°$,$\angle BAD = \angle EAC = \angle FBC = \angle FCB = 45°$,所以点$F$在$\triangle ABC$的外接圆上,所以$\angle BAF = \angle FCB = 45°$,所以$\angle DAF = \angle BAD + \angle BAF = 90°$,所以$\angle ADB + \angle DAF = 180°$,$\angle DAF = \angle AEC$,所以$BD// AF// CE$,所以$S_{\triangle ABF} = S_{\triangle ADF}$,$S_{\triangle ACF} = S_{\triangle AEF}$,所以$S_{\triangle DEF} = S_{\triangle ADF} + S_{\triangle AEF} = S_{\triangle ABF} + S_{\triangle ACF} = S_{四边形ABFC} = S_{\triangle ABC} + S_{\triangle BCF}$.因为$S_{\triangle DEF}:S_{\triangle ABC} = 5:2$,所以$S_{\triangle DEF} = \frac{5}{2}S_{\triangle ABC}$,所以$\frac{5}{2}S_{\triangle ABC} = S_{\triangle ABC} + S_{\triangle BCF}$.设$AB = m$,$AC = n(m > n)$,则$S_{\triangle ABC} = \frac{1}{2}mn$,$BC^2 = AB^2 + AC^2 = m^2 + n^2$,所以$BF^2 + CF^2 = BC^2 = m^2 + n^2$.因为$BF = CF$,所以$2CF^2 = m^2 + n^2$,所以$S_{\triangle BCF} = \frac{1}{2}BF· CF = \frac{1}{2}CF^2 = \frac{1}{4}(m^2 + n^2)$,所以$\frac{1}{2}mn = \frac{1}{6}(m^2 + n^2)$,所以$n^2 - 3mn + m^2 = 0$,所以$n = \frac{3 - \sqrt{5}}{2}m(n = \frac{3 + \sqrt{5}}{2}m$不合题意,舍去$)$,所以$\tan\angle ABC = \frac{AC}{AB} = \frac{n}{m} = \frac{3 - \sqrt{5}}{2}$.