零五网 全部参考答案 亮点给力提优课时作业本答案 2026年亮点给力提优课时作业本九年级数学下册苏科版 第50页解析答案
3. (13分)亮点原创 定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点与该边所对顶点连线长度的平方,则称这个点为三角形该边的"给力点".如图①,在$\triangle ABC$中,$E$是边$BC$上一点,连接$AE$.若$AE^{2}=BE· CE$,则称点$E$是$\triangle ABC$中边$BC$上的"给力点".
(1)如图②,$\triangle ABC$是$\odot O$的内接三角形,点$E$是$\triangle ABC$中边$BC$上的"给力点".若$\angle BAE=\angle CAE$,求$\frac{AE^{2}}{AB· AC}$的值;
(2)在$\mathrm{Rt}\triangle ABC$中,$\angle BAC = 90^{\circ}$,$AB = 4\sqrt{5}$,$BC = 10$,点$E$是$\triangle ABC$中边$BC$上的"给力点",求$BE$的长.


答案:
3.(1)延长AE交⊙O于点D,连接BD.因为点E是△ABC中边BC上的“给力点”,所以AE² = BE·CE.因为∠AEC = ∠BED,∠C = ∠D,所以△ACE∽△BDE,所以$\frac{AE}{BE}$ = $\frac{CE}{DE}$,所以AE·DE = BE·CE,所以AE² = AE·DE,所以AE = DE,所以AD = 2AE.因为∠BAE = ∠CAE,∠D = ∠C,所以△ABD∽△AEC,所以$\frac{AB}{AE}$ = $\frac{AD}{AC}$,所以AB·AC = AD·AE,所以AB·AC = 2AE²,所以$\frac{AE^{2}}{AB· AC}$ = $\frac{1}{2}$.
(2)如图,过点A作AD⊥BC于点D,则∠ADB = ∠ADC = 90°.因为∠BAC = 90°,AB = 4$\sqrt{5}$,BC = 10,所以AC = $\sqrt{BC^{2}-AB^{2}}$ = 2$\sqrt{5}$,所以S△ABC = $\frac{1}{2}$AB·AC = 20.又S△ABC = $\frac{1}{2}$BC·AD,所以AD = $\frac{2×20}{10}$ = 4,所以BD = $\sqrt{AB^{2}-AD^{2}}$ = 8,CD = $\sqrt{AC^{2}-AD^{2}}$ = 2.因为点E是△ABC中边BC上的“给力点”,所以AE² = BE·CE.又AE² = AD² + DE²,所以BE·CE = AD² + DE².设BE = x,则CE = BC - BE = 10 - x,DE = |BD - BE| = |8 - x|,所以x(10 - x) = 16 + |8 - x|²,解得x = 5或8.故BE的长为5或8.
4. (2025·江苏泰州模拟·15分)新趋势 如图,二次函数$y = -x^{2} + bx + 3$的图像与$x$轴交于$A$,$B$两点,与$y$轴交于点$C$,点$A$的坐标为$(-1,0)$,$D$为$OC$的中点,点$P$在抛物线上.
(1)$b=$
2
;
(2)若点$P$在第一象限,过点$P$作$PH⊥ x$轴,垂足为$H$,$PH$与$BC$,$BD$分别交于点$M$,$N$.是否存在这样的点$P$,使得$PM = MN = NH$?若存在,求出点$P$的坐标;若不存在,请说明理由;
(3)若点$P$的横坐标小于$3$,过点$P$作$PQ⊥ BD$,垂足为$Q$,直线$PQ$与$x$轴交于点$R$,且$S_{\triangle PQB}=2S_{\triangle QRB}$,求点$P$的坐标.


答案:4.(1)2
(2)存在.在y = -x² + 2x + 3中,令x = 0,得y = 3,所以C(0,3);令y = 0,得-x² + 2x + 3 = 0,解得x₁ = -1,x₂ = 3,所以B(3,0).因为D为OC的中点,所以D(0,$\frac{3}{2}$).设直线BC的函数表达式为y = k₁x + b₁,则$\begin{cases}3k₁ + b₁ = 0,\\b₁ = 3,\end{cases}$解得$\begin{cases}k₁ = -1,\\b₁ = 3,\end{cases}$所以直线BC的函数表达式为y = -x + 3.设直线BD的函数表达式为y = k₂x + b₂,则$\begin{cases}3k₂ + b₂ = 0,\\b₂ = \frac{3}{2},\end{cases}$解得$\begin{cases}k₂ = -\frac{1}{2},\\b₂ = \frac{3}{2},\end{cases}$所以直线BD的函数表达式为y = -$\frac{1}{2}$x + $\frac{3}{2}$.设P(m,-m² + 2m + 3)(0 < m < 3),则M(m,-m + 3),N(m,-$\frac{1}{2}$m + $\frac{3}{2}$),H(m,0),所以PM = -m² + 2m + 3 - (-m + 3) = -m² + 3m,MN = -m + 3 - (-$\frac{1}{2}$m + $\frac{3}{2}$) = -$\frac{1}{2}$m + $\frac{3}{2}$,NH = -$\frac{1}{2}$m + $\frac{3}{2}$.因为PM = MN = NH,所以-m² + 3m = -$\frac{1}{2}$m + $\frac{3}{2}$,解得m₁ = $\frac{1}{2}$,m₂ = 3(不合题意,舍去),则-m² + 2m + 3 = $\frac{15}{4}$,所以P($\frac{1}{2}$,$\frac{15}{4}$).故存在满足题意的点P,且点P的坐标为($\frac{1}{2}$,$\frac{15}{4}$).
(3)过点P作PF⊥x轴于点F,交BD于点E.因为B(3,0),D(0,$\frac{3}{2}$),所以OB = 3,OD = $\frac{3}{2}$,所以BD = $\sqrt{OB^{2}+OD^{2}}$ = $\frac{3\sqrt{5}}{2}$,所以cos∠OBD = $\frac{OB}{BD}$ = $\frac{2\sqrt{5}}{5}$.因为PQ⊥BD,所以∠PRF + ∠OBD = 90°.又∠PRF + ∠EPQ = 90°,所以∠EPQ = ∠OBD,所以cos∠EPQ = cos∠OBD.又cos∠EPQ = $\frac{PQ}{PE}$ = $\frac{PF}{PR}$,所以$\frac{PQ}{PE}$ = $\frac{PF}{PR}$ = $\frac{2\sqrt{5}}{5}$,所以PQ = $\frac{2\sqrt{5}}{5}$PE,PR = $\frac{\sqrt{5}}{2}$PF.因为S△PQB = 2S△QRB,所以PQ = 2QR.设直线BD与抛物线的另一个交点为G.令-x² + 2x + 3 = -$\frac{1}{2}$x + $\frac{3}{2}$,解得x₁ = 3,x₂ = -$\frac{1}{2}$,所以点G的横坐标为 -$\frac{1}{2}$.设P(t,-t² + 2t + 3)(t < 3),则E(t,-$\frac{1}{2}$t + $\frac{3}{2}$),F(t,0),所以PF = |-t² + 2t + 3|,PE = |-t² + 2t + 3 - (-$\frac{1}{2}$t + $\frac{3}{2}$)| = |-t² + $\frac{5}{2}$t + $\frac{3}{2}$|.分类讨论如下:①若 -$\frac{1}{2}$ < t < 3,则点P在直线BD上方,所以PF = -t² + 2t + 3,PE = -t² + $\frac{5}{2}$t + $\frac{3}{2}$.因为PQ = 2QR,所以PQ = $\frac{2}{3}$PR,所以$\frac{2\sqrt{5}}{5}$PE = $\frac{2}{3}$·$\frac{\sqrt{5}}{2}$PF,所以PE = $\frac{5}{6}$PF,即 -t² + $\frac{5}{2}$t + $\frac{3}{2}$ = $\frac{5}{6}$(-t² + 2t + 3),解得t = 2(t = 3不合题意,舍去),则 -t² + 2t + 3 = 3,所以P(2,3);②若 -1 < t < -$\frac{1}{2}$,则点P在x轴上方,且在直线BD下方,此时S△PQB = 2S△QRB不成立;③若t < -1,则点P在x轴下方,所以PF = t² - 2t - 3,PE = t² - $\frac{5}{2}$t - $\frac{3}{2}$.因为PQ = 2QR,所以PQ = 2PR,所以$\frac{2\sqrt{5}}{5}$PE = 2·$\frac{\sqrt{5}}{2}$PF,所以PE = $\frac{5}{2}$PF,所以t² - $\frac{5}{2}$t - $\frac{3}{2}$ = $\frac{5}{2}$(t² - 2t - 3),解得t = -$\frac{4}{3}$(t = 3不合题意,舍去),则 -t² + 2t + 3 = -$\frac{13}{9}$,所以P(-$\frac{4}{3}$,-$\frac{13}{9}$).综上所述,点P的坐标为(2,3)或(-$\frac{4}{3}$,-$\frac{13}{9}$).
上一页 下一页