零五网 全部参考答案 亮点给力提优课时作业本答案 2026年亮点给力提优课时作业本九年级数学下册苏科版 第56页解析答案
13. (13分)经科学家研究发现,声音在空气中传播的速度v(m/s)与气温$t(°\mathrm{C})$有关,下列列出了一组相关数据:

(1)以气温为横坐标、声音在空气中传播的速度为纵坐标,在平面直角坐标系中画出相应的点,并用一条适当的直线表示声音在空气中传播的速度v(m/s)与气温$t(°\mathrm{C})$之间的关系;
(2)求声音在空气中传播的速度v(m/s)与气温$t(°\mathrm{C})$之间的函数表达式;
(3)当气温为$23°\mathrm{C}$时,某人看到烟花燃放5 s后才听到声响,那么此人与烟花燃放地相距多远?
答案:
13.(1)如图所示:
5101520t
(2)设声音在空气中传播的速度$v(m/s)$与气温$t(^{\circ}C)$之间的函数表达式为$v = kt + b$.把点$(0,331)$,$(20,343)$分别代入$v = kt + b$,得$\begin{cases}b = 331,\\20k + b = 343,\end{cases}$解得$\begin{cases}k = \frac{3}{5},\\b = 331,\end{cases}$所以$v = \frac{3}{5}t + 331$.故声音在空气中传播的速度$v(m/s)$与气温$t(^{\circ}C)$之间的函数表达式为$v = \frac{3}{5}t + 331$.
(3)在$v = \frac{3}{5}t + 331$中,令$t = 23$,得$v = \frac{3}{5}×23 + 331 = 344.8$.因为$344.8×5 = 1724(m)$,所以此人与烟花燃放地相距$1724m$.
14. (12分)新素养 在矩形ABCD中,$AB=6$,$BC=8$,E是边AD上的动点,将矩形ABCD沿BE折叠,点A落在点$A'$处,连接$A'C$,$BD$.
(1)如图①,求证:$\angle DEA'=2\angle ABE$;
(2)如图②,若点$A'$恰好落在BD上,求$\tan\angle ABE$的值.


答案:14.(1)因为四边形$ABCD$为矩形,$BC = 8$,所以$\angle A = 90^{\circ}$,$AD = BC = 8$.由折叠的性质,得$\angle BA^{\prime}E = \angle A = 90^{\circ}$,$\angle A^{\prime}BE = \angle ABE$,所以$\angle ABA^{\prime}=2\angle ABE$.因为$\angle A+\angle ABA^{\prime}+\angle BA^{\prime}E+\angle AEA^{\prime}=360^{\circ}$,所以$\angle ABA^{\prime}+\angle AEA^{\prime}=180^{\circ}$.又$\angle DEA^{\prime}+\angle AEA^{\prime}=180^{\circ}$,所以$\angle DEA^{\prime}=\angle ABA^{\prime}$,所以$\angle DEA^{\prime}=2\angle ABE$.
(2)由折叠的性质,得$A^{\prime}B = AB = 6$,$A^{\prime}E = AE$.设$A^{\prime}E = AE = x$.因为$AD = BC = 8$,所以$DE = AD - AE = 8 - x$.因为$\angle A = 90^{\circ}$,所以$BD = \sqrt{AB^{2}+AD^{2}} = 10$,所以$A^{\prime}D = BD - A^{\prime}B = 4$.因为$\angle BA^{\prime}E = 90^{\circ}$,所以$\angle DA^{\prime}E = 180^{\circ}-\angle BA^{\prime}E = 90^{\circ}$,所以$A^{\prime}D^{2}+A^{\prime}E^{2}=DE^{2}$,所以$4^{2}+x^{2}=(8 - x)^{2}$,解得$x = 3$,所以$AE = 3$,所以$\tan\angle ABE = \frac{AE}{AB}=\frac{1}{2}$.
15. (2025·江苏南京模拟·15分)新素养 如图,在平面直角坐标系中,O是原点,抛物线$L_1:y=x^2+bx+c$经过点$C(0,-3)$,与抛物线$L_2:y=-\frac{1}{2}x^2-\frac{3}{2}x+2$的一个交点为A,且点A的横坐标为2,P,Q分别是抛物线$L_1,L_2$上的动点.
(1)求抛物线$L_1$的函数表达式;
(2)若以A,C,P,Q四点为顶点的四边形恰为平行四边形,求点P的坐标;
(3)设R为抛物线$L_1$上另一个动点,且CA平分$\angle PCR$.若$OQ// PR$,求点Q的坐标.


答案:
15.(1)在$y = -\frac{1}{2}x^{2}-\frac{3}{2}x + 2$中,令$x = 2$,得$y = - 3$,所以$A(2,-3)$.把点$A(2,-3)$,$C(0,-3)$分别代入$y = x^{2}+bx + c$,得$\begin{cases}4 + 2b + c = - 3,\\c = - 3,\end{cases}$解得$\begin{cases}b = - 2,\\c = - 3,\end{cases}$所以抛物线$L_{1}$的函数表达式为$y = x^{2}-2x - 3$.
(2)设$P(m,m^{2}-2m - 3)$,$Q(n,-\frac{1}{2}n^{2}-\frac{3}{2}n + 2)$.又$A(2,-3)$,$C(0,-3)$,所以当以$A$,$C$,$P$,$Q$四点为顶点的四边形恰为平行四边形时,分类讨论如下:①若$AC$为平行四边形的对角线,则$\begin{cases}m + n = 2,\\m^{2}-2m - 3+(-\frac{1}{2}n^{2}-\frac{3}{2}n + 2)= - 3+(-3),\end{cases}$解得$\begin{cases}m = - 3,\ = 5\end{cases}$或$\begin{cases}m = 0,\ = 2\end{cases}$(不合题意,舍去),则$m^{2}-2m - 3 = 12$,所以$P(-3,12)$;②若$AP$为平行四边形的对角线,则$\begin{cases}m + 2 = n,\\m^{2}-2m - 3+(-3)=-\frac{1}{2}n^{2}-\frac{3}{2}n + 2+(-3),\end{cases}$解得$\begin{cases}m = - 1,\ = 1\end{cases}$或$\begin{cases}m = 0,\ = 2\end{cases}$(不合题意,舍去),则$m^{2}-2m - 3 = 0$,所以$P(-1,0)$;③若$AQ$为平行四边形的对角线,则$\begin{cases}n + 2 = m,\\-\frac{1}{2}n^{2}-\frac{3}{2}n + 2+(-3)=m^{2}-2m - 3+(-3),\end{cases}$解得$\begin{cases}m = 3,\ = 1\end{cases}$或$\begin{cases}m = -\frac{4}{3},\ = -\frac{10}{3}\end{cases}$当$m = 3$时,$m^{2}-2m - 3 = 0$;当$m = -\frac{4}{3}$时,$m^{2}-2m - 3 = \frac{13}{9}$.所以$P(3,0)$或$P(-\frac{4}{3},\frac{13}{9})$.综上所述,点$P$的坐标为$(-3,12)$或$(-1,0)$或$(3,0)$或$(-\frac{4}{3},\frac{13}{9})$.
(3)如图,当点$P$在$y$轴左侧时,抛物线$L_{1}$上不存在点$R$,使得$CA$平分$\angle PCR$;当点$P$在$y$轴右侧时,不妨设点$P$在$CA$的上方,点$R$在$CA$的下方.过$P$,$R$两点作$y$轴的垂线,垂足分别为$S$,$T$,过点$P$作$PH⊥ TR$交$TR$的延长线于点$H$,则$\angle PSC = \angle RTC = 90^{\circ}$.因为$A(2,-3)$,$C(0,-3)$,所以$AC// x$轴,所以$AC⊥ y$轴,所以$\angle ACS = \angle ACT = 90^{\circ}$.因为$CA$平分$\angle PCR$,所以$\angle PCA = \angle RCA$.又$\angle PCA+\angle PCS = \angle ACS$,$\angle RCA + \angle RCT = \angle ACT$,所以$\angle PCS = \angle RCT$,所以$\triangle PSC∼\triangle RTC$,所以$\frac{PS}{CS}=\frac{RT}{CT}$.设$P(x_{1},x_{1}^{2}-2x_{1}-3)$,$R(x_{2},x_{2}^{2}-2x_{2}-3)$,则$\frac{x_{1}}{x_{1}^{2}-2x_{1}-3-(-3)}=\frac{x_{2}}{-3-(x_{2}^{2}-2x_{2}-3)}$.整理,得$x_{1}+x_{2} = 4$.在$Rt\triangle PRH$中,$\tan\angle PRH = \frac{PH}{RH}=\frac{x_{1}^{2}-2x_{1}-3-(x_{2}^{2}-2x_{2}-3)}{x_{1}-x_{2}}=x_{1}+x_{2}-2 = 2$.过点$Q$作$QK⊥ x$轴于点$K$.设$Q(t,-\frac{1}{2}t^{2}-\frac{3}{2}t + 2)$.若$OQ// PR$,则$\angle QOK = \angle PRH$,所以$-\frac{1}{2}t^{2}-\frac{3}{2}t + 2 = \tan\angle PRH = 2$,所以$-\frac{1}{2}t^{2}-\frac{3}{2}t + 2 = - 7\pm\sqrt{65}$,解得$t = \frac{-7\pm\sqrt{65}}{2}$,则$-\frac{1}{2}t^{2}-\frac{3}{2}t + 2 = - 7\pm\sqrt{65}$,所以点$Q$的坐标为$(\frac{-7+\sqrt{65}}{2},-7+\sqrt{65})$或$(\frac{-7-\sqrt{65}}{2},-7-\sqrt{65})$.
上一页