1. (2024·宜宾)下列计算正确的是 (
A.$a + a = a^2$
B.$5a - 3a = 2$
C.$3x · 2x = 6x^2$
D.$(-x)^3 ÷ (-x)^2 = x$
C
)A.$a + a = a^2$
B.$5a - 3a = 2$
C.$3x · 2x = 6x^2$
D.$(-x)^3 ÷ (-x)^2 = x$
答案:1.C
2. 下列运算中,正确的是 (
A.$x^3 · x^5 = x^{15}$
B.$2x + 3y = 5xy$
C.$(x - 2)^2 = x^2 - 4$
D.$2x^2 · (3x^2 - 5y) = 6x^4 - 10x^2y$
D
)A.$x^3 · x^5 = x^{15}$
B.$2x + 3y = 5xy$
C.$(x - 2)^2 = x^2 - 4$
D.$2x^2 · (3x^2 - 5y) = 6x^4 - 10x^2y$
答案:2.D
3. 若$5x^3y^{m - 1} · (-3x^{m + n}y^{2n + 2}) = -15x^9y^9$,则$3m - n$的值为 (
A.2
B.-2
C.10
D.-10
C
)A.2
B.-2
C.10
D.-10
答案:3.C
解析:
$5x^3y^{m - 1} · (-3x^{m + n}y^{2n + 2}) = -15x^{3 + m + n}y^{m - 1 + 2n + 2} = -15x^{m + n + 3}y^{m + 2n + 1}$,
因为$5x^3y^{m - 1} · (-3x^{m + n}y^{2n + 2}) = -15x^9y^9$,
所以可得方程组:$\begin{cases}m + n + 3 = 9 \\ m + 2n + 1 = 9\end{cases}$,
解第一个方程:$m + n = 9 - 3 = 6$,即$m = 6 - n$,
将$m = 6 - n$代入第二个方程:$6 - n + 2n + 1 = 9$,
$n + 7 = 9$,$n = 2$,
则$m = 6 - 2 = 4$,
所以$3m - n = 3×4 - 2 = 12 - 2 = 10$。
C
因为$5x^3y^{m - 1} · (-3x^{m + n}y^{2n + 2}) = -15x^9y^9$,
所以可得方程组:$\begin{cases}m + n + 3 = 9 \\ m + 2n + 1 = 9\end{cases}$,
解第一个方程:$m + n = 9 - 3 = 6$,即$m = 6 - n$,
将$m = 6 - n$代入第二个方程:$6 - n + 2n + 1 = 9$,
$n + 7 = 9$,$n = 2$,
则$m = 6 - 2 = 4$,
所以$3m - n = 3×4 - 2 = 12 - 2 = 10$。
C
4. 已知多项式$x^2 - 2(m + 1)x + 9$是关于$x$的完全平方式,则$m$的值为 (
A.2或-4
B.-2或-4
C.-2
D.-2或0
A
)A.2或-4
B.-2或-4
C.-2
D.-2或0
答案:4.A
解析:
因为多项式$x^2 - 2(m + 1)x + 9$是完全平方式,所以$x^2 - 2(m + 1)x + 9=(x\pm3)^2$。
当$x^2 - 2(m + 1)x + 9=(x + 3)^2=x^2 + 6x + 9$时,$-2(m + 1)=6$,解得$m=-4$;
当$x^2 - 2(m + 1)x + 9=(x - 3)^2=x^2 - 6x + 9$时,$-2(m + 1)=-6$,解得$m=2$。
综上,$m=2$或$m=-4$。
A
当$x^2 - 2(m + 1)x + 9=(x + 3)^2=x^2 + 6x + 9$时,$-2(m + 1)=6$,解得$m=-4$;
当$x^2 - 2(m + 1)x + 9=(x - 3)^2=x^2 - 6x + 9$时,$-2(m + 1)=-6$,解得$m=2$。
综上,$m=2$或$m=-4$。
A
5. 已知$m$,$n$满足$m^2 + n^2 = 2 + mn$,则$(2m - 3n)^2 + (m + 2n)(m - 2n)$的最大值为 (
A.24
B.$\frac{44}{3}$
C.$\frac{16}{3}$
D.-4
B
)A.24
B.$\frac{44}{3}$
C.$\frac{16}{3}$
D.-4
答案:5.B 解析:设 $m + n = k$,则 $m^2 + 2mn + n^2 = k^2$,$\therefore mn + 2 + 2mn = k^2$,$\therefore mn = \frac{1}{3}k^2 - \frac{2}{3}$,$\therefore$ 原式 $= 5(m^2 + n^2) - 12mn = 10 - 7mn = \frac{7}{3}k^2 + \frac{44}{3}$。$\because k^2 \geq 0$,$\therefore -\frac{7}{3}k^2 \leq 0$,$\therefore -\frac{7}{3}k^2 + \frac{44}{3} \leq \frac{44}{3}$,即原式 $\leq \frac{44}{3}$,$\therefore (2m - 3n)^2 + (m + 2n)(m - 2n)$ 的最大值为 $\frac{44}{3}$。
6. (1)(2024·扬州)计算$3a^2 · 2a^3$的结果为
(2)(2024·常州)化简$(x + 1)^2 - x(x + 1)$的结果为
(3)若$ab^2 = -3$,则$-ab(a^2b^5 - ab^3 - b)$的值为
$6a^5$
;(2)(2024·常州)化简$(x + 1)^2 - x(x + 1)$的结果为
$x + 1$
;(3)若$ab^2 = -3$,则$-ab(a^2b^5 - ab^3 - b)$的值为
$33$
.答案:6.(1) $6a^5$ (2) $x + 1$ (3) $33$
解析:
(1) $3a^2 · 2a^3 = 6a^{2+3} = 6a^5$
(2) $(x + 1)^2 - x(x + 1) = x^2 + 2x + 1 - x^2 - x = x + 1$
(3) $-ab(a^2b^5 - ab^3 - b) = -a^3b^6 + a^2b^4 + ab^2 = -(ab^2)^3 + (ab^2)^2 + ab^2$,将$ab^2 = -3$代入得:$-(-3)^3 + (-3)^2 + (-3) = 27 + 9 - 3 = 33$
(2) $(x + 1)^2 - x(x + 1) = x^2 + 2x + 1 - x^2 - x = x + 1$
(3) $-ab(a^2b^5 - ab^3 - b) = -a^3b^6 + a^2b^4 + ab^2 = -(ab^2)^3 + (ab^2)^2 + ab^2$,将$ab^2 = -3$代入得:$-(-3)^3 + (-3)^2 + (-3) = 27 + 9 - 3 = 33$
7. (1)若$m + n = 10$,$mn = 5$,则$m^2 + n^2$的值为
(2)已知$(a + b)^2 = 9$,$(a - b)^2 = 4$,则$a^2 + b^2$的值为
(3)若计算$(x + 1)(x^2 - 2ax + a^2)$的结果中不含$x^2$项,则$a$的值为
(4)已知$x - y = 2$,$y - z = 2$,$x + z = -14$,则$x^2 - z^2$的值为
$90$
;(2)已知$(a + b)^2 = 9$,$(a - b)^2 = 4$,则$a^2 + b^2$的值为
$\frac{13}{2}$
,$ab$的值为$\frac{5}{4}$
;(3)若计算$(x + 1)(x^2 - 2ax + a^2)$的结果中不含$x^2$项,则$a$的值为
$\frac{1}{2}$
;(4)已知$x - y = 2$,$y - z = 2$,$x + z = -14$,则$x^2 - z^2$的值为
$-56$
.答案:7.(1) $90$ (2) $\frac{13}{2}$ $\frac{5}{4}$ (3) $\frac{1}{2}$ (4) $-56$
解析:
(1) $m^2 + n^2=(m + n)^2-2mn=10^2-2×5=100 - 10=90$
(2) $\because(a + b)^2=a^2 + 2ab + b^2=9$,$(a - b)^2=a^2-2ab + b^2=4$
$\therefore a^2 + b^2=\frac{(a + b)^2+(a - b)^2}{2}=\frac{9 + 4}{2}=\frac{13}{2}$
$ab=\frac{(a + b)^2-(a - b)^2}{4}=\frac{9 - 4}{4}=\frac{5}{4}$
(3) $(x + 1)(x^2-2ax + a^2)=x^3-2ax^2 + a^2x + x^2-2ax + a^2=x^3+(1 - 2a)x^2+(a^2-2a)x + a^2$
$\because$结果中不含$x^2$项
$\therefore1 - 2a=0$
$\therefore a=\frac{1}{2}$
(4) $\because x - y=2$,$y - z=2$
$\therefore x - z=4$
$\because x + z=-14$
$\therefore x^2 - z^2=(x + z)(x - z)=-14×4=-56$
(2) $\because(a + b)^2=a^2 + 2ab + b^2=9$,$(a - b)^2=a^2-2ab + b^2=4$
$\therefore a^2 + b^2=\frac{(a + b)^2+(a - b)^2}{2}=\frac{9 + 4}{2}=\frac{13}{2}$
$ab=\frac{(a + b)^2-(a - b)^2}{4}=\frac{9 - 4}{4}=\frac{5}{4}$
(3) $(x + 1)(x^2-2ax + a^2)=x^3-2ax^2 + a^2x + x^2-2ax + a^2=x^3+(1 - 2a)x^2+(a^2-2a)x + a^2$
$\because$结果中不含$x^2$项
$\therefore1 - 2a=0$
$\therefore a=\frac{1}{2}$
(4) $\because x - y=2$,$y - z=2$
$\therefore x - z=4$
$\because x + z=-14$
$\therefore x^2 - z^2=(x + z)(x - z)=-14×4=-56$
8. 计算:
(1)$5ab^3 · (-\frac{3}{4}a^3b^2) · (-\frac{2}{3}ab^4c)^3$;
(2)$t^3 - 2t[t^2 - 2t(t - 3)]$;
(3)(2024·济宁)$x(y - 4x) + (2x + y)(2x - y)$;
(4)$(a^2 + 9)^2 - (a + 3)(3 - a)(a^2 + 9)$.
(1)$5ab^3 · (-\frac{3}{4}a^3b^2) · (-\frac{2}{3}ab^4c)^3$;
(2)$t^3 - 2t[t^2 - 2t(t - 3)]$;
(3)(2024·济宁)$x(y - 4x) + (2x + y)(2x - y)$;
(4)$(a^2 + 9)^2 - (a + 3)(3 - a)(a^2 + 9)$.
答案:8.(1) $\frac{10}{9}a^7b^{17}c^3$ (2) $3t^3 - 12t^2$ (3) $xy - y^2$ (4) $2a^4 + 18a^2$
解析:
(1)$5ab^3 · (-\frac{3}{4}a^3b^2) · (-\frac{2}{3}ab^4c)^3$
$=5ab^3 · (-\frac{3}{4}a^3b^2) · (-\frac{8}{27}a^3b^{12}c^3)$
$=5×(-\frac{3}{4})×(-\frac{8}{27})·a^{1+3+3}b^{3+2+12}c^3$
$=\frac{10}{9}a^7b^{17}c^3$
(2)$t^3 - 2t[t^2 - 2t(t - 3)]$
$=t^3 - 2t[t^2 - 2t^2 + 6t]$
$=t^3 - 2t[-t^2 + 6t]$
$=t^3 + 2t^3 - 12t^2$
$=3t^3 - 12t^2$
(3)$x(y - 4x) + (2x + y)(2x - y)$
$=xy - 4x^2 + 4x^2 - y^2$
$=xy - y^2$
(4)$(a^2 + 9)^2 - (a + 3)(3 - a)(a^2 + 9)$
$=(a^2 + 9)^2 + (a^2 - 9)(a^2 + 9)$
$=(a^2 + 9)[(a^2 + 9) + (a^2 - 9)]$
$=(a^2 + 9)(2a^2)$
$=2a^4 + 18a^2$
$=5ab^3 · (-\frac{3}{4}a^3b^2) · (-\frac{8}{27}a^3b^{12}c^3)$
$=5×(-\frac{3}{4})×(-\frac{8}{27})·a^{1+3+3}b^{3+2+12}c^3$
$=\frac{10}{9}a^7b^{17}c^3$
(2)$t^3 - 2t[t^2 - 2t(t - 3)]$
$=t^3 - 2t[t^2 - 2t^2 + 6t]$
$=t^3 - 2t[-t^2 + 6t]$
$=t^3 + 2t^3 - 12t^2$
$=3t^3 - 12t^2$
(3)$x(y - 4x) + (2x + y)(2x - y)$
$=xy - 4x^2 + 4x^2 - y^2$
$=xy - y^2$
(4)$(a^2 + 9)^2 - (a + 3)(3 - a)(a^2 + 9)$
$=(a^2 + 9)^2 + (a^2 - 9)(a^2 + 9)$
$=(a^2 + 9)[(a^2 + 9) + (a^2 - 9)]$
$=(a^2 + 9)(2a^2)$
$=2a^4 + 18a^2$