1. 如果 $2x - 7y = 8$,那么用含 $x$ 的代数式表示 $y$ 为(
A.$y = \frac{8 - 2x}{7}$
B.$y = \frac{2x - 8}{7}$
C.$x = \frac{8 + 7y}{2}$
D.$x = \frac{8 - 7y}{2}$
B
)A.$y = \frac{8 - 2x}{7}$
B.$y = \frac{2x - 8}{7}$
C.$x = \frac{8 + 7y}{2}$
D.$x = \frac{8 - 7y}{2}$
答案:1. B
解析:
$2x - 7y = 8$
$-7y = 8 - 2x$
$y = \frac{2x - 8}{7}$
B
$-7y = 8 - 2x$
$y = \frac{2x - 8}{7}$
B
2. 用代入法解方程组 $\begin{cases}y = 2x - 3①\\3x - 2y = 8②\end{cases}$ 时,将①代入②中,所得的方程正确的是( )
A.$3x - 4x - 6 = 8$
B.$3x - 4x + 6 = 8$
C.$3x + 4x - 3 = 8$
D.$3x - 4x - 3 = 8$
A.$3x - 4x - 6 = 8$
B.$3x - 4x + 6 = 8$
C.$3x + 4x - 3 = 8$
D.$3x - 4x - 3 = 8$
答案:2. B
解析:
将①代入②,得$3x - 2(2x - 3) = 8$,去括号得$3x - 4x + 6 = 8$。
B
B
3. 若 $5x^{3m - 2n} - 2y^{n - m} + 11 = 0$ 是关于 $x$,$y$ 的二元一次方程,则 $m$ 的值为
3
,$n$ 的值为4
。答案:3. 3 4
解析:
因为$5x^{3m - 2n} - 2y^{n - m} + 11 = 0$是关于$x$,$y$的二元一次方程,所以$x$,$y$的次数都为$1$,可得方程组:
$\begin{cases}3m - 2n = 1 \\m = 1\end{cases}$
由第二个方程$n - m = 1$,得$n = m + 1$,将其代入第一个方程:
$3m - 2(m + 1) = 1$
$3m - 2m - 2 = 1$
$m - 2 = 1$
$m = 3$
则$n = m + 1 = 3 + 1 = 4$
3;4
$\begin{cases}3m - 2n = 1 \\m = 1\end{cases}$
由第二个方程$n - m = 1$,得$n = m + 1$,将其代入第一个方程:
$3m - 2(m + 1) = 1$
$3m - 2m - 2 = 1$
$m - 2 = 1$
$m = 3$
则$n = m + 1 = 3 + 1 = 4$
3;4
4. 用代入法解下列方程组:
(1)(2024·上海)$\begin{cases}x = -y\\x + 2y = 6\end{cases}$
(2)(2024·浙江)$\begin{cases}2x - y = 5\\4x + 3y = -10\end{cases}$
(3)$\begin{cases}2x + 3y = -19\\x + 5y = 1\end{cases}$
(4)$\begin{cases}2x - 3y = 1\frac{y + 1}{4} = \frac{x + 2}{3}\end{cases}$
(1)(2024·上海)$\begin{cases}x = -y\\x + 2y = 6\end{cases}$
(2)(2024·浙江)$\begin{cases}2x - y = 5\\4x + 3y = -10\end{cases}$
(3)$\begin{cases}2x + 3y = -19\\x + 5y = 1\end{cases}$
(4)$\begin{cases}2x - 3y = 1\frac{y + 1}{4} = \frac{x + 2}{3}\end{cases}$
答案:$4. (1)\begin{cases} x = -6 \\ y = 6 \end{cases} (2)\begin{cases} x = 0.5 \\ y = -4 \end{cases} (3)\begin{cases} x = -14 \\ y = 3 \end{cases} (4)\begin{cases} x = -3 \\ y = -\frac{7}{3} \end{cases}$
解析:
解:$\begin{cases}2x - 3y = 1, \\ \frac{y + 1}{4} = \frac{x + 2}{3}.\end{cases}$
由第二个方程,得$3(y + 1) = 4(x + 2)$,
$3y + 3 = 4x + 8$,
$3y = 4x + 5$,
$y = \frac{4x + 5}{3}$。
将$y = \frac{4x + 5}{3}$代入第一个方程,得$2x - 3×\frac{4x + 5}{3} = 1$,
$2x - (4x + 5) = 1$,
$2x - 4x - 5 = 1$,
$-2x = 6$,
$x = -3$。
将$x = -3$代入$y = \frac{4x + 5}{3}$,得$y = \frac{4×(-3) + 5}{3} = \frac{-12 + 5}{3} = -\frac{7}{3}$。
所以方程组的解为$\begin{cases}x = -3 \\ y = -\frac{7}{3}\end{cases}$。
由第二个方程,得$3(y + 1) = 4(x + 2)$,
$3y + 3 = 4x + 8$,
$3y = 4x + 5$,
$y = \frac{4x + 5}{3}$。
将$y = \frac{4x + 5}{3}$代入第一个方程,得$2x - 3×\frac{4x + 5}{3} = 1$,
$2x - (4x + 5) = 1$,
$2x - 4x - 5 = 1$,
$-2x = 6$,
$x = -3$。
将$x = -3$代入$y = \frac{4x + 5}{3}$,得$y = \frac{4×(-3) + 5}{3} = \frac{-12 + 5}{3} = -\frac{7}{3}$。
所以方程组的解为$\begin{cases}x = -3 \\ y = -\frac{7}{3}\end{cases}$。
5. 由方程组 $\begin{cases}2x + m = 1\\y - 3 = m\end{cases}$,可得出 $x$ 与 $y$ 的数量关系是( )
A.$2x + y = 4$
B.$2x - y = 4$
C.$2x + y = -4$
D.$2x - y = -4$
A.$2x + y = 4$
B.$2x - y = 4$
C.$2x + y = -4$
D.$2x - y = -4$
答案:5. A
解析:
由方程组$\begin{cases}2x + m = 1\\y - 3 = m\end{cases}$,
由第二个方程得$m=y - 3$,
将$m=y - 3$代入第一个方程$2x + m = 1$,
得$2x + y - 3 = 1$,
整理得$2x + y = 4$。
A
由第二个方程得$m=y - 3$,
将$m=y - 3$代入第一个方程$2x + m = 1$,
得$2x + y - 3 = 1$,
整理得$2x + y = 4$。
A
6. 已知 $\begin{cases}x = -3\\y = -2\end{cases}$ 是方程组 $\begin{cases}ax + cy = 1\\cx - by = 2\end{cases}$ 的解,则 $a$,$b$ 之间的关系是( )
A.$4b - 9a = 1$
B.$3a + 2b = 1$
C.$4b - 9a = -1$
D.$4b + 9a = 1$
A.$4b - 9a = 1$
B.$3a + 2b = 1$
C.$4b - 9a = -1$
D.$4b + 9a = 1$
答案:6. D
解析:
将$\begin{cases}x = -3\\y = -2\end{cases}$代入方程组$\begin{cases}ax + cy = 1\\cx - by = 2\end{cases}$,得:
$\begin{cases}-3a - 2c = 1 & (1)\\-3c + 2b = 2 & (2)\end{cases}$
由$(1)$式得:$c = \frac{-3a - 1}{2}$
将$c = \frac{-3a - 1}{2}$代入$(2)$式:
$-3×\frac{-3a - 1}{2} + 2b = 2$
$\frac{9a + 3}{2} + 2b = 2$
两边同乘2:$9a + 3 + 4b = 4$
整理得:$4b + 9a = 1$
D
$\begin{cases}-3a - 2c = 1 & (1)\\-3c + 2b = 2 & (2)\end{cases}$
由$(1)$式得:$c = \frac{-3a - 1}{2}$
将$c = \frac{-3a - 1}{2}$代入$(2)$式:
$-3×\frac{-3a - 1}{2} + 2b = 2$
$\frac{9a + 3}{2} + 2b = 2$
两边同乘2:$9a + 3 + 4b = 4$
整理得:$4b + 9a = 1$
D