1. 计算$(-4x^{5}y)^{3}$的结果是(
A.$-4x^{5}y^{3}$
B.$64x^{15}y^{3}$
C.$-64x^{15}y^{3}$
D.$-12x^{8}y^{4}$
C
)A.$-4x^{5}y^{3}$
B.$64x^{15}y^{3}$
C.$-64x^{15}y^{3}$
D.$-12x^{8}y^{4}$
答案:1. C
解析:
$(-4x^{5}y)^{3}=(-4)^{3}· (x^{5})^{3}· y^{3}=-64x^{15}y^{3}$,结果是C。
2. 计算:
(1)(2024·滨州)$(-2a)^{2}=$
(2)(2024·宿迁)$(ab^{2})^{3}=$
(1)(2024·滨州)$(-2a)^{2}=$
$4a^{2}$
;(2)(2024·宿迁)$(ab^{2})^{3}=$
$a^{3}b^{6}$
.答案:$2. (1) 4a^{2} (2) a^{3}b^{6}$
3. 若$x^{n}=2$,$y^{n}=3$,则$(x^{2}y)^{2n}$的值为
144
.答案:3. 144
解析:
$(x^{2}y)^{2n}=x^{4n}y^{2n}=(x^{n})^{4}(y^{n})^{2}$,
因为$x^{n}=2$,$y^{n}=3$,
所以原式$=2^{4}×3^{2}=16×9=144$。
因为$x^{n}=2$,$y^{n}=3$,
所以原式$=2^{4}×3^{2}=16×9=144$。
4. 计算:
(1)$(-4a^{3}b)^{2}$;
(2)$(-9)^{3}×(-\frac{2}{3})^{3}×(\frac{1}{3})^{3}$.
(1)$(-4a^{3}b)^{2}$;
(2)$(-9)^{3}×(-\frac{2}{3})^{3}×(\frac{1}{3})^{3}$.
答案:$4. (1) 16a^{6}b^{2} (2) 8$
解析:
(1)$(-4a^{3}b)^{2}=(-4)^{2}· (a^{3})^{2}· b^{2}=16a^{6}b^{2}$;
(2)$(-9)^{3}×(-\frac{2}{3})^{3}×(\frac{1}{3})^{3}=[(-9)×(-\frac{2}{3})×\frac{1}{3}]^{3}=(2)^{3}=8$
(2)$(-9)^{3}×(-\frac{2}{3})^{3}×(\frac{1}{3})^{3}=[(-9)×(-\frac{2}{3})×\frac{1}{3}]^{3}=(2)^{3}=8$
5. 如果$(3a^{m}b^{m + n})^{3}=27a^{9}b^{3}$,那么$m$与$n$的积为(
A.$-6$
B.$6$
C.$1$
D.$-1$
A
)A.$-6$
B.$6$
C.$1$
D.$-1$
答案:5. A
解析:
$(3a^{m}b^{m + n})^{3}=27a^{3m}b^{3(m + n)}$,
因为$(3a^{m}b^{m + n})^{3}=27a^{9}b^{3}$,
所以$3m=9$,$3(m + n)=3$,
由$3m=9$得$m=3$,
将$m=3$代入$3(m + n)=3$,得$3(3 + n)=3$,$3 + n=1$,$n=-2$,
则$m · n=3×(-2)=-6$。
A
因为$(3a^{m}b^{m + n})^{3}=27a^{9}b^{3}$,
所以$3m=9$,$3(m + n)=3$,
由$3m=9$得$m=3$,
将$m=3$代入$3(m + n)=3$,得$3(3 + n)=3$,$3 + n=1$,$n=-2$,
则$m · n=3×(-2)=-6$。
A
6. (教材P13习题第5题变式)用简便方法计算:
(1)$(-0.2)^{2026}×5^{2025}$;
(2)$(-1\frac{7}{9})^{11}×(\frac{3}{8})^{11}×(-\frac{3}{2})^{12}$.
(1)$(-0.2)^{2026}×5^{2025}$;
(2)$(-1\frac{7}{9})^{11}×(\frac{3}{8})^{11}×(-\frac{3}{2})^{12}$.
答案:6. (1) 原式$=(-0.2)^{2025+1} × 5^{2025} = -0.2 × (-0.2)^{2025} × 5^{2025} = -0.2 × (-0.2 × 5)^{2025} = -0.2 × (-1) = 0.2 (2) $原式$=(-\frac{16}{9})^{11} × (\frac{3}{8})^{11} × (-\frac{3}{2})^{11} × (-\frac{3}{2}) = [-\frac{16}{9} × \frac{3}{8} × (-\frac{3}{2})]^{11} × (-\frac{3}{2}) = 1 × (-\frac{3}{2}) = -\frac{3}{2}$
解析:
(1)原式$=(-0.2)^{2025+1} × 5^{2025} = -0.2 × (-0.2)^{2025} × 5^{2025} = -0.2 × (-0.2 × 5)^{2025} = -0.2 × (-1)^{2025} = -0.2 × (-1) = 0.2$
(2)原式$=(-\frac{16}{9})^{11} × (\frac{3}{8})^{11} × (-\frac{3}{2})^{11} × (-\frac{3}{2}) = [(-\frac{16}{9}) × \frac{3}{8} × (-\frac{3}{2})]^{11} × (-\frac{3}{2}) = [(-\frac{16}{9}) × (-\frac{9}{16})]^{11} × (-\frac{3}{2}) = 1^{11} × (-\frac{3}{2}) = -\frac{3}{2}$
(2)原式$=(-\frac{16}{9})^{11} × (\frac{3}{8})^{11} × (-\frac{3}{2})^{11} × (-\frac{3}{2}) = [(-\frac{16}{9}) × \frac{3}{8} × (-\frac{3}{2})]^{11} × (-\frac{3}{2}) = [(-\frac{16}{9}) × (-\frac{9}{16})]^{11} × (-\frac{3}{2}) = 1^{11} × (-\frac{3}{2}) = -\frac{3}{2}$
7. (1)已知$a^{2n}=3$,求$(3a^{3n})^{2}-5(a^{2})^{2n}$的值;
(2)已知$2^{x + 2}·3^{x + 2}=36^{x - 3}$,求$x$的值.
(2)已知$2^{x + 2}·3^{x + 2}=36^{x - 3}$,求$x$的值.
答案:7. (1) 原式$=9a^{6n} - 5a^{4n} = 9(a^{2n})^{3} - 5(a^{2n})^{2}. $把$ a^{2n} = 3 $代入, 得原式$=9 × 3^{3} - 5 × 3^{2} = 198 (2) $因为$ 2^{x+2} · 3^{x+2} = 36^{x-3}, $所以$ (2 × 3)^{x+2} = (6^{2})^{x-3}, $即$ 6^{x+2} = 6^{2x-6}, $所以 x+2 = 2x-6, 解得 x = 8
8. (教材P25复习题第15题变式)试确定$2^{2025}×3^{2026}$的个位数字.
答案:$8. 2^{2025} × 3^{2026} = (2^{2025} × 3^{2025}) × 3 = 6^{2025} × 3. $因为$ 6^{1} = 6, 6^{2} = 36, 6^{3} = 216, ···, $所以$ 6^{2025} $的个位数字为 6, 所以$ 6^{2025} × 3 $的个位数字是 8, 即$ 2^{2025} × 3^{2026} $的个位数字是 8
解析:
$2^{2025} × 3^{2026} = (2^{2025} × 3^{2025}) × 3 = 6^{2025} × 3$
因为$6^1 = 6$,$6^2 = 36$,$6^3 = 216$,···,所以$6^{2025}$的个位数字为$6$
$6 × 3 = 18$,所以$6^{2025} × 3$的个位数字是$8$
即$2^{2025} × 3^{2026}$的个位数字是$8$
因为$6^1 = 6$,$6^2 = 36$,$6^3 = 216$,···,所以$6^{2025}$的个位数字为$6$
$6 × 3 = 18$,所以$6^{2025} × 3$的个位数字是$8$
即$2^{2025} × 3^{2026}$的个位数字是$8$