零五网 全部参考答案 经纶学典学霸 2026年学霸题中题七年级数学下册苏科版 第80页解析答案
1. 解下列方程组:
(1) $\begin{cases}x - y = 3, \\ 2y + 3(x - y) = 11\end{cases}$
(2) $\begin{cases}2x - 3y - 2 = 0, \\ \dfrac{2x - 3y + 5}{7} + 2y = 9\end{cases}$
(3) $\begin{cases}4x - 2y = 3, \\ (3x - y)(2x - y) = 4\end{cases}$
答案:1. (1) $\begin{cases}x - y = 3, &①\\2y + 3(x - y) = 11, &②\end{cases}$ 将①代入②,得 $2y + 3×3 = 11$,解得 $y = 1$。把 $y = 1$ 代入①,得 $x = 4$。所以原方程组的解为 $\begin{cases}x = 4,\\y = 1.\end{cases}$
(2) $\begin{cases}2x - 3y - 2 = 0, &①\\\dfrac{2x - 3y + 5}{7} + 2y = 9, &②\end{cases}$ 由①得 $2x - 3y = 2$ ③,把③代入②,得 $\dfrac{2 + 5}{7} + 2y = 9$,解得 $y = 4$。把 $y = 4$ 代入①,得 $2x - 3×4 - 2 = 0$,解得 $x = 7$。所以原方程组的解为 $\begin{cases}x = 7,\\y = 4.\end{cases}$
(3) $\begin{cases}4x - 2y = 3, &①\\(3x - y)(2x - y) = 4, &②\end{cases}$ 由①得 $2x - y = \dfrac{3}{2}$ ③,把③代入②,得 $(x + \dfrac{3}{2})×\dfrac{3}{2} = 4$,解得 $x = \dfrac{7}{6}$。把 $x = \dfrac{7}{6}$ 代入③,得 $2×\dfrac{7}{6} - y = \dfrac{3}{2}$,解得 $y = \dfrac{5}{6}$,所以原方程组的解为 $\begin{cases}x = \dfrac{7}{6},\\y = \dfrac{5}{6}.\end{cases}$
2. 解下列方程组:
(1) $\begin{cases}57x + 65y = 179, \\ 65x + 57y = 187\end{cases}$
(2) $\begin{cases}8359x + 1641y = 28359, \\ 1641x + 8359y = 21641\end{cases}$
答案:2. (1) $\begin{cases}57x + 65y = 179, &①\\65x + 57y = 187, &②\end{cases}$ 由①+②,得 $122x + 122y = 366$,即 $x + y = 3$ ③,②-①,得 $8x - 8y = 8$,即 $x - y = 1$ ④。③+④,得 $2x = 4$,解得 $x = 2$。③-④,得 $2y = 2$,解得 $y = 1$。所以原方程组的解为 $\begin{cases}x = 2,\\y = 1.\end{cases}$
(2) $\begin{cases}8359x + 1641y = 28359, &①\\1641x + 8359y = 21641, &②\end{cases}$ 由①-②,得 $6718x - 6718y = 6718$,即 $x - y = 1$。由①+②,得 $10000x + 10000y = 50000$,即 $x + y = 5$。将它们组成新方程组,得 $\begin{cases}x - y = 1,\\x + y = 5,\end{cases}$ 解得 $\begin{cases}x = 3,\\y = 2.\end{cases}$ 所以原方程组的解为 $\begin{cases}x = 3,\\y = 2.\end{cases}$
3. (2025·北京期中)阅读下面解方程组的过程,回答相应的问题。
解方程组:$\begin{cases}3x + 2y = -3, &① \\ 5y + 12x = -3. &②\end{cases}$
② - ①,得 $9x + 3y = 0$,即 $y = -3x$ ③。
把③代入①,得 $3x + 2×(-3x) = -3$,
解得 $x = 1$。
把 $x = 1$ 代入③,得 $y = -3×1 = -3$。
所以原方程组的解为 $\begin{cases}x = 1, \\ y = -3\end{cases}$
以上解方程组的方法叫作消常数项法。
请用上面的方法解方程组:$\begin{cases}\dfrac{x}{3} - \dfrac{y}{15} = \dfrac{4}{3}, \\ \dfrac{x}{4} - \dfrac{y}{10} = \dfrac{2}{3}\end{cases}$
答案:3. 原方程组可化为 $\begin{cases}\dfrac{x}{3} - \dfrac{y}{15} = \dfrac{4}{3}, &①\\\dfrac{x}{2} - \dfrac{y}{5} = \dfrac{4}{3}, &②\end{cases}$ ②-①得 $\dfrac{x}{6} - \dfrac{2y}{15} = 0$,即 $\dfrac{x}{4} = \dfrac{y}{5}$,把 $\dfrac{x}{4} = \dfrac{y}{5}$ 代入到 $\dfrac{x}{4} - \dfrac{y}{10} = \dfrac{2}{3}$,可得 $y = \dfrac{20}{3}$,所以 $x = \dfrac{16}{3}$,则原方程组的解是 $\begin{cases}x = \dfrac{16}{3},\\y = \dfrac{20}{3}.\end{cases}$
上一页 下一页