零五网 全部参考答案 启东中学作业本 2025年启东中学作业本八年级数学上册江苏版 第123页解析答案
3.某企业下属A,B两厂向甲、乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲、乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲、乙两地的运费分别为28元/吨和25元/吨.
(1)求A,B两厂各运送多少吨水泥;
(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A,B两厂运往甲、乙两地的总运费为w元.求w与a之间的函数表达式,请你为该企业设计一种总运费最低的运输方案,并说明理由.
答案:解: (1) 设A厂运送水泥$x$吨,则B厂运送水泥$(x + 20)$吨,根据题意得$x + x + 20 = 520$,
解得$x = 250$,此时$x + 20 = 270$.
答:A厂运送水泥250吨,B厂运送水泥270吨.
(2) 由题意得从A厂运往乙地$(250 - a)$吨水泥,从B厂运往甲地$(240 - a)$吨水泥,从B厂运往乙地$280 - (250 - a) = 30 + a$(吨)水泥,由题意得$w = 40a + 35(250 - a) + 28(240 - a) + 25(a + 30) = 40a + 8750 - 35a + 6720 - 28a + 25a + 750 = 2a + 16220$,
$\because$从B厂运往甲地的水泥最多150吨,
$\therefore 240 - a\leq150$,解得$a\geq90$,$\because 2\gt0$,$\therefore w$随$a$的增大而增大,$\therefore$当$a = 90$时,总费用最低,最低运费为$2\times90 + 16220 = 16400$(元),$\therefore$总运费最低的运送方案为从A厂运往甲地90吨水泥,运往乙地160吨水泥;从B厂运往甲地150吨水泥,运往乙地120吨水泥,最低运费为16400元.
4.(2023·达州)某县著名传统土特产“豆笋”“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.
(1)分别求出每件豆笋、豆干的进价;
(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的$\frac{3}{2}$,该特产店有哪几种进货方案?
(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?
答案:解: (1) 设每件豆笋的进价为$x$元,每件豆干的进价为$y$元,
由题意得$\left\{\begin{array}{l} 2x + 3y = 240,\\ 3x + 4y = 340,\end{array}\right.$解得$\left\{\begin{array}{l} x = 60,\\ y = 40,\end{array}\right.$
$\therefore$每件豆笋的进价为60元,每件豆干的进价为40元.
(2) 设购进豆笋$a$件,则购进豆干$(200 - a)$件,
由题意可得$\left\{\begin{array}{l} 60a + 40(200 - a)\leq10440,\\ a\geq\frac{3}{2}(200 - a),\end{array}\right.$
解得$120\leq a\leq122$,且$a$为整数,
$\therefore$该特产店有以下三种进货方案:
当$a = 120$时,$200 - a = 80$,即购进豆笋120件,豆干80件,
当$a = 121$时,$200 - a = 79$,即购进豆笋121件,豆干79件,
当$a = 122$时,$200 - a = 78$,即购进豆笋122件,豆干78件.
(3) 设总利润为$w$元,
则$w = (80 - 60)\cdot a + (55 - 40)\cdot(200 - a) = 5a + 3000$,
$\because 5\gt0$,$\therefore w$随$a$的增大而增大,
$\therefore$当$a = 122$时,$w$取得最大值,最大值为$5\times122 + 3000 = 3610$,$\therefore$购进豆笋122件,豆干78件可使该特产店获得利润最大,最大利润为3610元.
上一页 下一页