1. 如图,$AB\perp BD$,$CD\perp BD$,$AD = BC$,则能直接判定$Rt\triangle ABD≌Rt\triangle CDB$的理由是(

A. $HL$
B. $ASA$
C. $SAS$
D. $SSS$
A
)
A. $HL$
B. $ASA$
C. $SAS$
D. $SSS$
答案:A
2. 下列结论错误的是(
A. 有两条直角边对应相等的两个直角三角形全等
B. 有一个锐角和一条直角边对应相等的两个直角三角形全等
C. 有两条边相等的两个直角三角形全等
D. 有一个锐角和斜边对应相等的两个直角三角形全等
C
)A. 有两条直角边对应相等的两个直角三角形全等
B. 有一个锐角和一条直角边对应相等的两个直角三角形全等
C. 有两条边相等的两个直角三角形全等
D. 有一个锐角和斜边对应相等的两个直角三角形全等
答案:C
3. 如图,在$\triangle ABC$中,$AB = AC$,$AD\perp BD$,$AE\perp EC$,垂足分别为$D$,$E$,要使$\triangle ABD≌\triangle ACE$,若根据“$HL$”判定,还需要加条件

$ AE = AD $(或 $ CE = BD $)
,若加条件$\angle BAE=\angle CAD$,则可用AAS
判定.
答案:$ AE = AD $(或 $ CE = BD $) AAS
4. 如图,$MN// PQ$,$AB\perp PQ$,点$A$,$D$和$B$,$C$分别在直线$MN$与$PQ$上,点$E$在$AB$上,$AD + BC = 7$,$AD = EB$,$DE = EC$,则$AB =$

7
.
答案:7
5. (2024春·淮安期末)如图,已知$AD = CB$,$CE\perp BD$,$AF\perp BD$,垂足分别为点$E$,$F$,若$DE = BF$,求证:$AD// BC$.

证明:$\because CE \perp BD$,$AF \perp BD$,$\therefore \angle AFD = \angle CEB = 90^{\circ}$。
$\because DE = BF$,$\therefore DE + EF = BF + EF$,即 $ DF = BE $,
在 $ Rt\triangle ADF $ 与 $ Rt\triangle CBE $ 中,
$\left\{\begin{array}{l} AD = CB, \\ DF = BE, \end{array}\right.$ $\therefore Rt\triangle ADF \cong Rt\triangle CBE(HL)$,
$\therefore \angle D = \angle B$,$\therefore AD // BC$。

证明:$\because CE \perp BD$,$AF \perp BD$,$\therefore \angle AFD = \angle CEB = 90^{\circ}$。
$\because DE = BF$,$\therefore DE + EF = BF + EF$,即 $ DF = BE $,
在 $ Rt\triangle ADF $ 与 $ Rt\triangle CBE $ 中,
$\left\{\begin{array}{l} AD = CB, \\ DF = BE, \end{array}\right.$ $\therefore Rt\triangle ADF \cong Rt\triangle CBE(HL)$,
$\therefore \angle D = \angle B$,$\therefore AD // BC$。
答案:证明:$\because CE \perp BD$,$AF \perp BD$,$\therefore \angle AFD = \angle CEB = 90^{\circ}$。
$\because DE = BF$,$\therefore DE + EF = BF + EF$,即 $ DF = BE $,
在 $ Rt\triangle ADF $ 与 $ Rt\triangle CBE $ 中,
$\left\{\begin{array}{l} AD = CB, \\ DF = BE, \end{array}\right.$ $\therefore Rt\triangle ADF \cong Rt\triangle CBE(HL)$,
$\therefore \angle D = \angle B$,$\therefore AD // BC$。
$\because DE = BF$,$\therefore DE + EF = BF + EF$,即 $ DF = BE $,
在 $ Rt\triangle ADF $ 与 $ Rt\triangle CBE $ 中,
$\left\{\begin{array}{l} AD = CB, \\ DF = BE, \end{array}\right.$ $\therefore Rt\triangle ADF \cong Rt\triangle CBE(HL)$,
$\therefore \angle D = \angle B$,$\therefore AD // BC$。
6. 如图,在$Rt\triangle ABC$中,$\angle ACB = 90^{\circ}$,$D$是$AB$边上一点,$BC = BD$,过点$D$作$DE\perp AB$交$AC$于点$E$,连接$CD$,$BE$交于点$F$.
(1)求证:$CE = DE$;
(2)若点$D$为$AB$的中点,求$\angle AED$的度数.

(1)求证:$CE = DE$;
(2)若点$D$为$AB$的中点,求$\angle AED$的度数.
60°

答案:(1) 证明:$\because DE \perp AB$,$\angle ACB = 90^{\circ}$,
$\therefore \triangle BCE$ 与 $\triangle BDE$ 都是直角三角形,
在 $ Rt\triangle BCE $ 与 $ Rt\triangle BDE $ 中,$\left\{\begin{array}{l} BE = BE, \\ BC = BD, \end{array}\right.$
$\therefore Rt\triangle BCE \cong Rt\triangle BDE(HL)$,
$\therefore CE = DE$。
(2) 解:$\because DE \perp AB$,$\therefore \angle ADE = \angle BDE = 90^{\circ}$,
$\because$ 点 $ D $ 为 $ AB $ 的中点,$\therefore AD = BD$,
又 $\because DE = DE$,$\therefore \triangle ADE \cong \triangle BDE(SAS)$,
$\therefore \angle AED = \angle DEB$,
$\because \triangle BCE \cong \triangle BDE$(已证),
$\therefore \angle CEB = \angle DEB$,$\therefore \angle AED = \angle DEB = \angle CEB$,
$\because \angle AED + \angle DEB + \angle CEB = 180^{\circ}$,
$\therefore \angle AED = 60^{\circ}$。
$\therefore \triangle BCE$ 与 $\triangle BDE$ 都是直角三角形,
在 $ Rt\triangle BCE $ 与 $ Rt\triangle BDE $ 中,$\left\{\begin{array}{l} BE = BE, \\ BC = BD, \end{array}\right.$
$\therefore Rt\triangle BCE \cong Rt\triangle BDE(HL)$,
$\therefore CE = DE$。
(2) 解:$\because DE \perp AB$,$\therefore \angle ADE = \angle BDE = 90^{\circ}$,
$\because$ 点 $ D $ 为 $ AB $ 的中点,$\therefore AD = BD$,
又 $\because DE = DE$,$\therefore \triangle ADE \cong \triangle BDE(SAS)$,
$\therefore \angle AED = \angle DEB$,
$\because \triangle BCE \cong \triangle BDE$(已证),
$\therefore \angle CEB = \angle DEB$,$\therefore \angle AED = \angle DEB = \angle CEB$,
$\because \angle AED + \angle DEB + \angle CEB = 180^{\circ}$,
$\therefore \angle AED = 60^{\circ}$。