9. (2023·苏州改编)如图,在 $ △ABC $ 中, $ AB = AC $, $ AD $ 为 $ △ABC $ 的角平分线. 以点 $ A $ 为圆心, $ AD $ 长为半径画弧,与 $ AB $, $ AC $ 分别交于点 $ E $, $ F $,连接 $ DE $, $ DF $. 求证: $ △ADE ≌ △ADF $.

证明:$\because AD$是$\triangle ABC$的角平分线,$\therefore$
由作图知,
在$\triangle ADE$和$\triangle ADF$中,$\left\{\begin{array}{l} AE=AF,\\ \angle BAD=\angle CAD,\\ AD=AD,\end{array}\right.$
$\therefore \triangle ADE\cong \triangle ADF$

证明:$\because AD$是$\triangle ABC$的角平分线,$\therefore$
$\angle BAD=\angle CAD$
。由作图知,
$AE=AF$
。在$\triangle ADE$和$\triangle ADF$中,$\left\{\begin{array}{l} AE=AF,\\ \angle BAD=\angle CAD,\\ AD=AD,\end{array}\right.$
$\therefore \triangle ADE\cong \triangle ADF$
(SAS)
。答案:证明:$\because AD$是$\triangle ABC$的角平分线,$\therefore \angle BAD=\angle CAD$。
由作图知,$AE=AF$。
在$\triangle ADE$和$\triangle ADF$中,$\left\{\begin{array}{l} AE=AF,\\ \angle BAD=\angle CAD,\\ AD=AD,\end{array}\right.$
$\therefore \triangle ADE\cong \triangle ADF(SAS)$。
由作图知,$AE=AF$。
在$\triangle ADE$和$\triangle ADF$中,$\left\{\begin{array}{l} AE=AF,\\ \angle BAD=\angle CAD,\\ AD=AD,\end{array}\right.$
$\therefore \triangle ADE\cong \triangle ADF(SAS)$。
10. (2023·宜兴二模)如图, $ △ABC $ 和 $ △CDE $ 均为等腰三角形, $ AC = BC $, $ CD = CE $, $ ∠ACB = ∠DCE $,点 $ D $ 在线段 $ AB $ 上(与点 $ A $, $ B $ 均不重合),连接 $ BE $.
(1) 求证: $ △ACD ≌ △BCE $;
证明:$\because \angle ACB=\angle DCE,\therefore \angle ACD=\angle BCE$,在$\triangle ACD$和$\triangle BCE$中,$\left\{\begin{array}{l} AC=BC,\\ \angle ACD=\angle BCE,\\ CD=CE,\end{array}\right.$$\therefore \triangle ACD\cong \triangle BCE$(
(2) 若 $ BD = 3 $, $ BE = 7 $,求 $ AB $ 的长.
解:由(1)知,$\triangle ACD\cong \triangle BCE$,$\therefore AD=BE=7,\therefore AB=AD+BD=7+3=$
(1) 求证: $ △ACD ≌ △BCE $;
证明:$\because \angle ACB=\angle DCE,\therefore \angle ACD=\angle BCE$,在$\triangle ACD$和$\triangle BCE$中,$\left\{\begin{array}{l} AC=BC,\\ \angle ACD=\angle BCE,\\ CD=CE,\end{array}\right.$$\therefore \triangle ACD\cong \triangle BCE$(
SAS
)。(2) 若 $ BD = 3 $, $ BE = 7 $,求 $ AB $ 的长.
解:由(1)知,$\triangle ACD\cong \triangle BCE$,$\therefore AD=BE=7,\therefore AB=AD+BD=7+3=$
10
。答案:(1) 证明:$\because \angle ACB=\angle DCE,\therefore \angle ACD=\angle BCE$,
在$\triangle ACD$和$\triangle BCE$中,$\left\{\begin{array}{l} AC=BC,\\ \angle ACD=\angle BCE,\\ CD=CE,\end{array}\right.$
$\therefore \triangle ACD\cong \triangle BCE(SAS)$。
(2) 解:由(1)知,$\triangle ACD\cong \triangle BCE$,
$\therefore AD=BE=7,\therefore AB=AD+BD=7+3=10$。
在$\triangle ACD$和$\triangle BCE$中,$\left\{\begin{array}{l} AC=BC,\\ \angle ACD=\angle BCE,\\ CD=CE,\end{array}\right.$
$\therefore \triangle ACD\cong \triangle BCE(SAS)$。
(2) 解:由(1)知,$\triangle ACD\cong \triangle BCE$,
$\therefore AD=BE=7,\therefore AB=AD+BD=7+3=10$。
11. 在 $ △ABC $ 中, $ AB = AC $,点 $ D $ 是 $ BC $ 上一点(不与点 $ B $, $ C $ 重合),以 $ AD $ 为一边在 $ AD $ 的右侧作 $ △ADE $,使 $ AD = AE $, $ ∠DAE = ∠BAC $,连接 $ CE $.
(1) 如图①, $ ∠BAC = 90^\circ $.
① 求证: $ △ABD ≌ △ACE $;
证明:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,即$\angle BAD=\angle CAE$。
在$\triangle ABD$与$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE$
② 求 $ ∠BCE $ 的度数.
解:$\because \triangle ABD\cong \triangle ACE$,
$\therefore \angle B=\angle ACE,\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle BCE=\angle B+\angle ACB$,又$\angle BAC=90^{\circ }$,
$\therefore \angle B+\angle ACB=90^{\circ },\therefore \angle BCE=$
(2) 如图②,设 $ ∠BAC = α $, $ ∠BCE = β $,则 $ α $, $ β $ 之间有怎样的数量关系? 并说明理由.
解:$ α $, $ β $ 之间的数量关系为
理由:由(1)①知$\triangle ABD\cong \triangle ACE,\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle B+\angle ACB=\beta$。
$\because \angle BAC+\angle B+\angle ACB=180^{\circ }$,
$\therefore \alpha +\beta =180^{\circ }$。
(1) 如图①, $ ∠BAC = 90^\circ $.
① 求证: $ △ABD ≌ △ACE $;
证明:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,即$\angle BAD=\angle CAE$。
在$\triangle ABD$与$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE$
SAS
。② 求 $ ∠BCE $ 的度数.
解:$\because \triangle ABD\cong \triangle ACE$,
$\therefore \angle B=\angle ACE,\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle BCE=\angle B+\angle ACB$,又$\angle BAC=90^{\circ }$,
$\therefore \angle B+\angle ACB=90^{\circ },\therefore \angle BCE=$
90°
。(2) 如图②,设 $ ∠BAC = α $, $ ∠BCE = β $,则 $ α $, $ β $ 之间有怎样的数量关系? 并说明理由.
解:$ α $, $ β $ 之间的数量关系为
$\alpha +\beta =180^{\circ }$
。理由:由(1)①知$\triangle ABD\cong \triangle ACE,\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle B+\angle ACB=\beta$。
$\because \angle BAC+\angle B+\angle ACB=180^{\circ }$,
$\therefore \alpha +\beta =180^{\circ }$。
答案:(1) ① 证明:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,即$\angle BAD=\angle CAE$。
在$\triangle ABD$与$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$。
② 解:$\because \triangle ABD\cong \triangle ACE$,
$\therefore \angle B=\angle ACE,\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle BCE=\angle B+\angle ACB$,又$\angle BAC=90^{\circ }$,
$\therefore \angle B+\angle ACB=90^{\circ },\therefore \angle BCE=90^{\circ }$。
(2) 解:$\alpha +\beta =180^{\circ }$。
理由:由(1)①知$\triangle ABD\cong \triangle ACE,\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle B+\angle ACB=\beta$。
$\because \angle BAC+\angle B+\angle ACB=180^{\circ }$,
$\therefore \alpha +\beta =180^{\circ }$。
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,即$\angle BAD=\angle CAE$。
在$\triangle ABD$与$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$。
② 解:$\because \triangle ABD\cong \triangle ACE$,
$\therefore \angle B=\angle ACE,\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle BCE=\angle B+\angle ACB$,又$\angle BAC=90^{\circ }$,
$\therefore \angle B+\angle ACB=90^{\circ },\therefore \angle BCE=90^{\circ }$。
(2) 解:$\alpha +\beta =180^{\circ }$。
理由:由(1)①知$\triangle ABD\cong \triangle ACE,\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB$,
$\therefore \angle B+\angle ACB=\beta$。
$\because \angle BAC+\angle B+\angle ACB=180^{\circ }$,
$\therefore \alpha +\beta =180^{\circ }$。