零五网 全部参考答案 启东中学作业本 2025年启东中学作业本八年级数学上册江苏版 第77页解析答案
8. 如图,已知$AB = 12$,$AB\perp BC$于点$B$,$AB\perp AD$于点$A$,$AD = 5$,$BC = 10$。点$E$是$CD$的中点,求$AE$的长。
第8题图
答案:
解:如答图,延长 AE 交 BC 于点 F.
$\because AB \perp BC, AB \perp AD, \therefore AD // BC,$
$\therefore \angle D = \angle C, \angle DAE = \angle CFE.$
又∵点 E 是 CD 的中点,
$\therefore DE = CE.$
在$\triangle AED$与$\triangle FEC$中,
$\left\{\begin{array}{l} \angle D = \angle C, \\ \angle DAE = \angle CFE, \\ DE = CE, \end{array}\right.$
$\therefore \triangle AED \cong \triangle FEC(AAS),$
$\therefore AE = FE, AD = FC.$
$\because AD = 5, BC = 10, \therefore BF = 5.$
在$Rt\triangle ABF$中,$AB^2 + BF^2 = AF^2, \therefore AF = 13,$
$\therefore AE = \frac{1}{2}AF = 6.5.$

9. (2023·苏州期中)如图,公路上$A$,$B$两点相距50 km,$C$,$D$为两村庄,$DA\perp AB$于点$A$,$CB\perp AB$于点$B$,已知$DA = 30$km,$CB = 20$km。现要在公路$AB$上建一个土特产市场$E$,使得$C$,$D$两村庄到市场$E$的距离相等,则市场$E$应建在距$A$点
20
千米处?判断此时$\triangle DEC$的形状,并请说明理由。
第9题图
答案:解:设$AE = x km$,则$BE = (50 - x)km,$
$\because DA \perp AB, CB \perp AB, \therefore \angle A = \angle B = 90^{\circ}.$
在$Rt\triangle ADE$中,$DE^2 = 30^2 + x^2,$
在$Rt\triangle CBE$中,$CE^2 = 20^2 + (50 - x)^2,$
$\because DE = CE, \therefore 30^2 + x^2 = 20^2 + (50 - x)^2,$
解得$x = 20$,即$AE = 20 km.$
答:市场 E 应建在距 A 点 20 km 的位置.
此时$\triangle DEC$是等腰直角三角形.
理由:可知$BE = 50 - 20 = 30(km),$
$\because AE = BC, AD = BE, \angle A = \angle B = 90^{\circ},$
$\therefore \triangle ADE \cong \triangle BEC(SAS),$
$\therefore \angle AED = \angle BCE,$
$\because \angle BCE + \angle BEC = 90^{\circ},$
$\therefore \angle AED + \angle BEC = 90^{\circ},$
$\therefore \angle DEC = 90^{\circ},$
$\because DE = CE, \therefore \triangle DEC$是等腰直角三角形.
10. 如图,在$\triangle ABC$中,$\angle ABC = 45^{\circ}$,$CD\perp AB$,$BE\perp AC$,垂足分别为$D$,$E$,$F$为$BC$的中点,$BE$与$DF$,$DC$分别交于点$G$,$H$,$\angle ABE = \angle CBE$。
(1)线段$BH$与$AC$相等吗?若相等,请给予证明;若不相等,请说明理由。
解:$BH = AC$. 证明:$\because CD \perp AB, BE \perp AC,$
$\therefore \angle BDH = \angle BEC = \angle CDA = 90^{\circ},$
$\therefore \angle A + \angle ACD = 90^{\circ}, \angle A + \angle HBD = 90^{\circ},$
$\therefore \angle HBD = \angle ACD.$
$\because \angle ABC = 45^{\circ},$
$\therefore \angle BCD = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ} = \angle ABC,$
$\therefore DB = DC.$
在$\triangle DBH$和$\triangle DCA$中,$\left\{\begin{array}{l} \angle BDH = \angle CDA, \\ BD = CD, \\ \angle HBD = \angle ACD, \end{array}\right.$
$\therefore \triangle DBH \cong \triangle DCA(ASA), \therefore BH = AC.$
(2)求证:$BG^2 - GE^2 = EA^2$。
证明:连接 CG,由(1)知,$DB = CD,$
$\because F$为 BC 的中点,$\therefore DF$垂直平分 BC,$\therefore BG = CG,$
$\because BE \perp AC, \therefore \angle AEB = \angle CEB = 90^{\circ},$
在$\triangle ABE$和$\triangle CBE$中,$\left\{\begin{array}{l} \angle ABE = \angle CBE, \\ BE = BE, \\ \angle AEB = \angle CEB, \end{array}\right.$
$\therefore \triangle ABE \cong \triangle CBE(ASA),$
$\therefore EC = EA,$
在$Rt\triangle CGE$中,由勾股定理得$CG^2 - GE^2 = CE^2,$
$\because CE = AE, BG = CG,$
$\therefore BG^2 - GE^2 = EA^2.$
答案:(1) 解:$BH = AC$. 证明:$\because CD \perp AB, BE \perp AC,$
$\therefore \angle BDH = \angle BEC = \angle CDA = 90^{\circ},$
$\therefore \angle A + \angle ACD = 90^{\circ}, \angle A + \angle HBD = 90^{\circ},$
$\therefore \angle HBD = \angle ACD.$
$\because \angle ABC = 45^{\circ},$
$\therefore \angle BCD = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ} = \angle ABC,$
$\therefore DB = DC.$
在$\triangle DBH$和$\triangle DCA$中,$\left\{\begin{array}{l} \angle BDH = \angle CDA, \\ BD = CD, \\ \angle HBD = \angle ACD, \end{array}\right.$
$\therefore \triangle DBH \cong \triangle DCA(ASA), \therefore BH = AC.$
(2) 证明:连接 CG,由(1)知,$DB = CD,$
$\because F$为 BC 的中点,$\therefore DF$垂直平分 BC,$\therefore BG = CG,$
$\because BE \perp AC, \therefore \angle AEB = \angle CEB = 90^{\circ},$
在$\triangle ABE$和$\triangle CBE$中,$\left\{\begin{array}{l} \angle ABE = \angle CBE, \\ BE = BE, \\ \angle AEB = \angle CEB, \end{array}\right.$
$\therefore \triangle ABE \cong \triangle CBE(ASA),$
$\therefore EC = EA,$
在$Rt\triangle CGE$中,由勾股定理得$CG^2 - GE^2 = CE^2,$
$\because CE = AE, BG = CG,$
$\therefore BG^2 - GE^2 = EA^2.$
上一页 下一页