11.(12分)如图,平面直角坐标系中有两点$A(1,3)$,$B(3,-1)$,完成下列问题:
(1)求出经过A,B两点的直线的函数表达式;
(2)点E是y轴上一点,连接AE,BE,当$AE+BE$取最小值时,点E的坐标为______;
(3)若点$C(1,-2)$,在线段AC上找一点F,使点F到AB,BC的距离相等.(请在图中标出点F的位置)

(1)求出经过A,B两点的直线的函数表达式;
(2)点E是y轴上一点,连接AE,BE,当$AE+BE$取最小值时,点E的坐标为______;
(3)若点$C(1,-2)$,在线段AC上找一点F,使点F到AB,BC的距离相等.(请在图中标出点F的位置)

答案:
(1) 解: 设直线 AB 的函数表达式为 $y = kx + b$,
根据题意得 $\left\{\begin{array}{l} k + b = 3,\\ 3k + b = -1,\end{array}\right.$ 解得 $\left\{\begin{array}{l} k = -2,\\ b = 5,\end{array}\right.$
∴经过 A,B 两点的直线的函数表达式为 $y = -2x + 5$。
(2) $(0,2)$
(3) 解: 如答图,点 F 为所作。

(1) 解: 设直线 AB 的函数表达式为 $y = kx + b$,
根据题意得 $\left\{\begin{array}{l} k + b = 3,\\ 3k + b = -1,\end{array}\right.$ 解得 $\left\{\begin{array}{l} k = -2,\\ b = 5,\end{array}\right.$
∴经过 A,B 两点的直线的函数表达式为 $y = -2x + 5$。
(2) $(0,2)$
(3) 解: 如答图,点 F 为所作。

12.(12分)(2024·南京期末)在$\triangle ABC$中,$\angle BAC= 90^{\circ}$,$AB= AC$.
(1)如图①,D为BC边上一点,连接AD,以AD为边作$\triangle ADE$,$\angle DAE= 90^{\circ}$,$AD= AE$,连接EC.求证:$BD= CE$,$BD\perp CE$;
(2)如图②,D为$\triangle ABC$外一点.若$\angle ADC= 45^{\circ}$,$BD= 13$,$CD= 5$,求AD的长.

(1)如图①,D为BC边上一点,连接AD,以AD为边作$\triangle ADE$,$\angle DAE= 90^{\circ}$,$AD= AE$,连接EC.求证:$BD= CE$,$BD\perp CE$;
(2)如图②,D为$\triangle ABC$外一点.若$\angle ADC= 45^{\circ}$,$BD= 13$,$CD= 5$,求AD的长.

答案:
(1) 证明: $\because ∠BAC = ∠DAE = 90^{\circ}$,
$\therefore ∠BAC - ∠DAC = ∠DAE - ∠DAC$,
即 $∠BAD = ∠CAE$,
在 $△ABD$ 和 $△ACE$ 中,$\left\{\begin{array}{l} AB = AC,\\ ∠BAD = ∠CAE,\\ AD = AE,\end{array}\right.$
$\therefore △ABD ≌ △ACE(SAS)$,$\therefore BD = CE$,$∠B = ∠ACE$,
$\because ∠BAC = 90^{\circ}$,$AB = AC$,
$\therefore ∠B = ∠BCA = 45^{\circ} = ∠ACE$,
$\therefore ∠BCE = ∠BCA + ∠ACE = 90^{\circ}$,即 $BD ⊥ CE$。
(2) 解: 如答图,过点 A 作 $AE ⊥ AD$,且 $AE = AD$,连接 DE,CE。
$\therefore △ADE$ 是等腰直角三角形。$\therefore ∠ADE = 45^{\circ}$。
$\because ∠ADC = 45^{\circ}$,$\therefore ∠CDE = 90^{\circ}$。同(1) 可证,$△ABD ≌ △ACE$,$\therefore BD = CE = 13$,
在 $Rt△CDE$ 中,$\because ∠CDE = 90^{\circ}$,$CD = 5$,$CE = 13$,
$\therefore DE^{2} + CD^{2} = CE^{2}$,即 $DE^{2} + 5^{2} = 13^{2}$,
$\therefore DE = 12$。
$\because ∠EAD = 90^{\circ}$,$\therefore AE^{2} + AD^{2} = DE^{2}$,
$\because AE = AD$,$\therefore 2AD^{2} = 144$,$\therefore AD = 6\sqrt{2}$。
(1) 证明: $\because ∠BAC = ∠DAE = 90^{\circ}$,
$\therefore ∠BAC - ∠DAC = ∠DAE - ∠DAC$,
即 $∠BAD = ∠CAE$,
在 $△ABD$ 和 $△ACE$ 中,$\left\{\begin{array}{l} AB = AC,\\ ∠BAD = ∠CAE,\\ AD = AE,\end{array}\right.$
$\therefore △ABD ≌ △ACE(SAS)$,$\therefore BD = CE$,$∠B = ∠ACE$,
$\because ∠BAC = 90^{\circ}$,$AB = AC$,
$\therefore ∠B = ∠BCA = 45^{\circ} = ∠ACE$,
$\therefore ∠BCE = ∠BCA + ∠ACE = 90^{\circ}$,即 $BD ⊥ CE$。
(2) 解: 如答图,过点 A 作 $AE ⊥ AD$,且 $AE = AD$,连接 DE,CE。

$\therefore △ADE$ 是等腰直角三角形。$\therefore ∠ADE = 45^{\circ}$。
$\because ∠ADC = 45^{\circ}$,$\therefore ∠CDE = 90^{\circ}$。同(1) 可证,$△ABD ≌ △ACE$,$\therefore BD = CE = 13$,
在 $Rt△CDE$ 中,$\because ∠CDE = 90^{\circ}$,$CD = 5$,$CE = 13$,
$\therefore DE^{2} + CD^{2} = CE^{2}$,即 $DE^{2} + 5^{2} = 13^{2}$,
$\therefore DE = 12$。
$\because ∠EAD = 90^{\circ}$,$\therefore AE^{2} + AD^{2} = DE^{2}$,
$\because AE = AD$,$\therefore 2AD^{2} = 144$,$\therefore AD = 6\sqrt{2}$。
13.(16分)如图①,在平面直角坐标系中,直线$y= x-12$分别交x轴,y轴于点A,B,过点A作x轴的垂线交直线$y= \frac{3}{4}x$于点C,点D是线段AB上一点,连接OD,以OD为直角边作等腰直角三角形ODE,使$\angle ODE= 90^{\circ}$,且点E在线段AC上,过点D作x轴的平行线交y轴于点G,设点D的纵坐标为m.
(1)点C的坐标为______;
(2)用含m的代数式表示点E的坐标,并求出m的取值范围;
(3)如图②,连接BE交DG于点F,若$EF= DF-2m$,求m的值.

(1)点C的坐标为______;
(2)用含m的代数式表示点E的坐标,并求出m的取值范围;
(3)如图②,连接BE交DG于点F,若$EF= DF-2m$,求m的值.

答案:
(1) $(12,9)$
(2) 解: 如答图,延长 CA 交 GD 于点 H。
由题意知 $∠DGO = ∠DHE = ∠ODE = 90^{\circ}$,
$\therefore ∠ODG + ∠EDH = 90^{\circ}$,$∠EDH + ∠DEH = 90^{\circ}$,
$\therefore ∠ODG = ∠DEH$,$\because OD = DE$,
$\therefore △DGO ≌ △EHD(AAS)$,$\therefore DG = EH$,$OG = DH$,
由题意知 $D(12 + m,m)$,$\therefore OG = AH = -m$,$DG = EH = 12 + m$,$\therefore AE = 12 + m - (-m) = 12 + 2m$,
$\therefore E(12,12 + 2m)$,$\because$ 点 E 在线段 AC 上,
$\therefore 0 ≤ 12 + 2m ≤ 9$,$\therefore -6 ≤ m ≤ -\frac{3}{2}$。
(3) 解: $\because B(0,-12)$,$E(12,2m + 12)$,$\therefore$ 直线 BE 的函数表达式为 $y = (2 + \frac{1}{6}m)x - 12$,$\therefore F(6,m)$,
$\because D(12 + m,m)$,$\therefore DF = 6 + m$,$EF = \sqrt{6^{2} + (12 + m)^{2}}$,
$\because EF = DF - 2m$,$\therefore \sqrt{6^{2} + (12 + m)^{2}} = 6 + m - 2m$,解得 $m = -4$。
(1) $(12,9)$
(2) 解: 如答图,延长 CA 交 GD 于点 H。

由题意知 $∠DGO = ∠DHE = ∠ODE = 90^{\circ}$,
$\therefore ∠ODG + ∠EDH = 90^{\circ}$,$∠EDH + ∠DEH = 90^{\circ}$,
$\therefore ∠ODG = ∠DEH$,$\because OD = DE$,
$\therefore △DGO ≌ △EHD(AAS)$,$\therefore DG = EH$,$OG = DH$,
由题意知 $D(12 + m,m)$,$\therefore OG = AH = -m$,$DG = EH = 12 + m$,$\therefore AE = 12 + m - (-m) = 12 + 2m$,
$\therefore E(12,12 + 2m)$,$\because$ 点 E 在线段 AC 上,
$\therefore 0 ≤ 12 + 2m ≤ 9$,$\therefore -6 ≤ m ≤ -\frac{3}{2}$。
(3) 解: $\because B(0,-12)$,$E(12,2m + 12)$,$\therefore$ 直线 BE 的函数表达式为 $y = (2 + \frac{1}{6}m)x - 12$,$\therefore F(6,m)$,
$\because D(12 + m,m)$,$\therefore DF = 6 + m$,$EF = \sqrt{6^{2} + (12 + m)^{2}}$,
$\because EF = DF - 2m$,$\therefore \sqrt{6^{2} + (12 + m)^{2}} = 6 + m - 2m$,解得 $m = -4$。