2. 如图,在$\triangle COB$中,$\angle COB = 90^{\circ}$,$\angle B = 30^{\circ}$,$OC = 3$。
(1)求$BC$的长;
(2)动点$Q$从点$B$出发以每秒$1$个单位长度的速度沿线段$BC$向终点$C$运动,点$Q$出发的同时,动点$P$从点$C$出发以每秒$1$个单位长度的速度沿射线$CO$运动,当点$Q$到达终点时,点$P$也随之停止运动,过点$Q$作$QG \perp CO$,垂足为$G$,设线段$PG$的长度为$d$,点$Q$的运动时间为$t$秒,求$d$与$t$的函数关系式;
(3)在(2)的条件下,连接$PQ$,以$PQ$为边向上作等边三角形$PQF$,连接$CF$,若$CF = 3$,求此时$PG$的长。

(1)求$BC$的长;
(2)动点$Q$从点$B$出发以每秒$1$个单位长度的速度沿线段$BC$向终点$C$运动,点$Q$出发的同时,动点$P$从点$C$出发以每秒$1$个单位长度的速度沿射线$CO$运动,当点$Q$到达终点时,点$P$也随之停止运动,过点$Q$作$QG \perp CO$,垂足为$G$,设线段$PG$的长度为$d$,点$Q$的运动时间为$t$秒,求$d$与$t$的函数关系式;
(3)在(2)的条件下,连接$PQ$,以$PQ$为边向上作等边三角形$PQF$,连接$CF$,若$CF = 3$,求此时$PG$的长。

答案:
2.解:(1)∵∠COB = 90°,∠B = 30°,OC = 3,∴BC = 6.
(2)∵∠COB = 90°,QG⊥OC,∴GQ//OB,
∴∠CQG = ∠B = 30°.
∵QB = t,∴CQ = 6 - t.
∴CG = $\frac{1}{2}$(6 - t).
当0 ≤ t ≤ 2时,d = $\frac{1}{2}$(6 - t) - t = 3 - $\frac{3}{2}$t;
当2 < t ≤ 6时,d = t - $\frac{1}{2}$(6 - t) = $\frac{3}{2}$t - 3.
(3)如答图①,当点P在点G上方时,在CB上截取一点K,使得CK = CP,连接PK.
∵∠PCK = 60°,CP = CK,∴△PCK是等边三角形,∴PC = PK,∠CPK = ∠FPQ = 60°,∴∠CPF = ∠KPQ.在等边△PQF中,PF = PQ,∴△CPF≌△KPQ(SAS),∴CF = KQ,∴CQ = CK + KQ = PC + CF,
∴6 - t = t + 3,∴t = $\frac{3}{2}$,∴PG = 3 - $\frac{3}{2}$×$\frac{3}{2}$ = $\frac{3}{4}$.
如答图②,当点P在点G下方时,同法可证CP = CF + CQ,则有t = 3 + 6 - t,解得t = $\frac{9}{2}$,
∴PG = $\frac{3}{2}$×$\frac{9}{2}$ - 3 = $\frac{15}{4}$.
综上所述,PG的长为$\frac{3}{4}$或$\frac{15}{4}$.

2.解:(1)∵∠COB = 90°,∠B = 30°,OC = 3,∴BC = 6.
(2)∵∠COB = 90°,QG⊥OC,∴GQ//OB,
∴∠CQG = ∠B = 30°.
∵QB = t,∴CQ = 6 - t.
∴CG = $\frac{1}{2}$(6 - t).
当0 ≤ t ≤ 2时,d = $\frac{1}{2}$(6 - t) - t = 3 - $\frac{3}{2}$t;
当2 < t ≤ 6时,d = t - $\frac{1}{2}$(6 - t) = $\frac{3}{2}$t - 3.
(3)如答图①,当点P在点G上方时,在CB上截取一点K,使得CK = CP,连接PK.
∵∠PCK = 60°,CP = CK,∴△PCK是等边三角形,∴PC = PK,∠CPK = ∠FPQ = 60°,∴∠CPF = ∠KPQ.在等边△PQF中,PF = PQ,∴△CPF≌△KPQ(SAS),∴CF = KQ,∴CQ = CK + KQ = PC + CF,
∴6 - t = t + 3,∴t = $\frac{3}{2}$,∴PG = 3 - $\frac{3}{2}$×$\frac{3}{2}$ = $\frac{3}{4}$.
如答图②,当点P在点G下方时,同法可证CP = CF + CQ,则有t = 3 + 6 - t,解得t = $\frac{9}{2}$,
∴PG = $\frac{3}{2}$×$\frac{9}{2}$ - 3 = $\frac{15}{4}$.
综上所述,PG的长为$\frac{3}{4}$或$\frac{15}{4}$.
