1. 如图,已知$\angle ACB=90^{\circ }$,$AC=BC$,$AD\perp CE$,$BE\perp CE$,垂足分别是$D$,$E$,若$AD=3$,$BE=1$,则$DE$的长是____。


答案:2 点拨:$\because BE\perp CE,AD\perp CE,\therefore \angle E=\angle ADC=90^{\circ },$
$\therefore \angle EBC+\angle BCE=90^{\circ }.\because \angle BCE+\angle ACD=90^{\circ },$
$\therefore \angle EBC=\angle DCA.$
在$\triangle CEB$和$\triangle ADC$中,$\left\{\begin{array}{l} \angle E=\angle ADC,\\ \angle EBC=\angle DCA,\\ BC=AC,\end{array}\right. $
$\therefore \triangle CEB\cong \triangle ADC(AAS),\therefore BE=DC=1,CE=AD=3.$
$\therefore DE=EC-CD=3-1=2.$
$\therefore \angle EBC+\angle BCE=90^{\circ }.\because \angle BCE+\angle ACD=90^{\circ },$
$\therefore \angle EBC=\angle DCA.$
在$\triangle CEB$和$\triangle ADC$中,$\left\{\begin{array}{l} \angle E=\angle ADC,\\ \angle EBC=\angle DCA,\\ BC=AC,\end{array}\right. $
$\therefore \triangle CEB\cong \triangle ADC(AAS),\therefore BE=DC=1,CE=AD=3.$
$\therefore DE=EC-CD=3-1=2.$
2. 在直线$m$上依次取互不重合的三个点$D$,$A$,$E$,在直线$m$上方有$AB=AC$,且满足$\angle BDA=\angle AEC=\angle BAC=\alpha$。
(1)如图①,当$\alpha =90^{\circ }$时,线段$DE$,$BD$,$CE$之间的数量关系是
(2)如图②,当$0^{\circ }<\alpha <180^{\circ }$时,(1)中结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。
(3)拓展与应用:如图③,当$\alpha =120^{\circ }$时,点$F$为$\angle BAC$平分线上的一点,且$AB=AF$,分别连接$FB$,$FD$,$FE$,$FC$,试判断$\triangle DEF$的形状,并说明理由。

(1)如图①,当$\alpha =90^{\circ }$时,线段$DE$,$BD$,$CE$之间的数量关系是
$DE=BD+CE$
。(2)如图②,当$0^{\circ }<\alpha <180^{\circ }$时,(1)中结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。
解:$DE=BD+CE$仍然成立.
证明:$\because \angle BDA=\angle BAC=\angle AEC=\alpha ,$
$\therefore \angle BAD+\angle EAC=\angle BAD+\angle DBA=180^{\circ }-\alpha ,$
$\therefore \angle DBA=\angle EAC,\because AB=AC,$
$\therefore \triangle DBA\cong \triangle EAC(AAS),\therefore BD=AE,AD=CE,$
$\therefore DE=AD+AE=BD+CE.$
证明:$\because \angle BDA=\angle BAC=\angle AEC=\alpha ,$
$\therefore \angle BAD+\angle EAC=\angle BAD+\angle DBA=180^{\circ }-\alpha ,$
$\therefore \angle DBA=\angle EAC,\because AB=AC,$
$\therefore \triangle DBA\cong \triangle EAC(AAS),\therefore BD=AE,AD=CE,$
$\therefore DE=AD+AE=BD+CE.$
(3)拓展与应用:如图③,当$\alpha =120^{\circ }$时,点$F$为$\angle BAC$平分线上的一点,且$AB=AF$,分别连接$FB$,$FD$,$FE$,$FC$,试判断$\triangle DEF$的形状,并说明理由。
解:$\triangle DEF$是等边三角形. 理由:
$\because \alpha =120^{\circ }$,AF平分$\angle BAC,\therefore \angle BAF=\angle CAF=60^{\circ }.$
$\because AB=AF=AC,\therefore \triangle ABF$和$\triangle ACF$都是等边三角形,
$\therefore FA=FC,\angle FCA=\angle FAB=\angle AFC=60^{\circ },$
同(2)可得,$\triangle BDA\cong \triangle AEC,$
$\therefore \angle BAD=\angle ACE,AD=CE,$
$\therefore \angle FAD=\angle FCE,\therefore \triangle FAD\cong \triangle FCE(SAS),$
$\therefore DF=EF,\angle DFA=\angle EFC,$
$\therefore \angle DFE=\angle DFA+\angle AFE=\angle EFC+\angle AFE=\angle AFC=60^{\circ },\therefore \triangle DEF$是等边三角形.
$\because \alpha =120^{\circ }$,AF平分$\angle BAC,\therefore \angle BAF=\angle CAF=60^{\circ }.$
$\because AB=AF=AC,\therefore \triangle ABF$和$\triangle ACF$都是等边三角形,
$\therefore FA=FC,\angle FCA=\angle FAB=\angle AFC=60^{\circ },$
同(2)可得,$\triangle BDA\cong \triangle AEC,$
$\therefore \angle BAD=\angle ACE,AD=CE,$
$\therefore \angle FAD=\angle FCE,\therefore \triangle FAD\cong \triangle FCE(SAS),$
$\therefore DF=EF,\angle DFA=\angle EFC,$
$\therefore \angle DFE=\angle DFA+\angle AFE=\angle EFC+\angle AFE=\angle AFC=60^{\circ },\therefore \triangle DEF$是等边三角形.

答案:(1)$DE=BD+CE$
(2)解:$DE=BD+CE$仍然成立.
证明:$\because \angle BDA=\angle BAC=\angle AEC=\alpha ,$
$\therefore \angle BAD+\angle EAC=\angle BAD+\angle DBA=180^{\circ }-\alpha ,$
$\therefore \angle DBA=\angle EAC,\because AB=AC,$
$\therefore \triangle DBA\cong \triangle EAC(AAS),\therefore BD=AE,AD=CE,$
$\therefore DE=AD+AE=BD+CE.$
(3)解:$\triangle DEF$是等边三角形. 理由:
$\because \alpha =120^{\circ }$,AF平分$\angle BAC,\therefore \angle BAF=\angle CAF=60^{\circ }.$
$\because AB=AF=AC,\therefore \triangle ABF$和$\triangle ACF$都是等边三角形,
$\therefore FA=FC,\angle FCA=\angle FAB=\angle AFC=60^{\circ },$
同(2)可得,$\triangle BDA\cong \triangle AEC,$
$\therefore \angle BAD=\angle ACE,AD=CE,$
$\therefore \angle FAD=\angle FCE,\therefore \triangle FAD\cong \triangle FCE(SAS),$
$\therefore DF=EF,\angle DFA=\angle EFC,$
$\therefore \angle DFE=\angle DFA+\angle AFE=\angle EFC+\angle AFE=\angle AFC=60^{\circ },\therefore \triangle DEF$是等边三角形.
(2)解:$DE=BD+CE$仍然成立.
证明:$\because \angle BDA=\angle BAC=\angle AEC=\alpha ,$
$\therefore \angle BAD+\angle EAC=\angle BAD+\angle DBA=180^{\circ }-\alpha ,$
$\therefore \angle DBA=\angle EAC,\because AB=AC,$
$\therefore \triangle DBA\cong \triangle EAC(AAS),\therefore BD=AE,AD=CE,$
$\therefore DE=AD+AE=BD+CE.$
(3)解:$\triangle DEF$是等边三角形. 理由:
$\because \alpha =120^{\circ }$,AF平分$\angle BAC,\therefore \angle BAF=\angle CAF=60^{\circ }.$
$\because AB=AF=AC,\therefore \triangle ABF$和$\triangle ACF$都是等边三角形,
$\therefore FA=FC,\angle FCA=\angle FAB=\angle AFC=60^{\circ },$
同(2)可得,$\triangle BDA\cong \triangle AEC,$
$\therefore \angle BAD=\angle ACE,AD=CE,$
$\therefore \angle FAD=\angle FCE,\therefore \triangle FAD\cong \triangle FCE(SAS),$
$\therefore DF=EF,\angle DFA=\angle EFC,$
$\therefore \angle DFE=\angle DFA+\angle AFE=\angle EFC+\angle AFE=\angle AFC=60^{\circ },\therefore \triangle DEF$是等边三角形.