1. 在$\triangle ABC$中,$\angle A$,$\angle B$,$\angle C$的对边长分别是$a$,$b$,$c$。判断下列$\triangle ABC$是不是直角三角形,若是,请指出哪个角是直角。
(1)$a = 2$,$b = 3$,$c = 4$; (2)$a = 5$,$b = 7$,$c = 9$;
(3)$a = 15$,$b = 8$,$c = 17$; (4)$a = 41$,$b = 9$,$c = 40$。
(1)$a = 2$,$b = 3$,$c = 4$; (2)$a = 5$,$b = 7$,$c = 9$;
(3)$a = 15$,$b = 8$,$c = 17$; (4)$a = 41$,$b = 9$,$c = 40$。
答案:解: (1) $\because a = 2$,$b = 3$,$c = 4$,
$\therefore a^{2} = 4$,$b^{2} = 9$,$c^{2} = 16$。
$\because 4 + 9 = 13 \neq 16$,$\therefore a^{2} + b^{2} \neq c^{2}$,
$\therefore \triangle ABC$不是直角三角形。
(2) $\because a = 5$,$b = 7$,$c = 9$,$\therefore a^{2} = 25$,$b^{2} = 49$,$c^{2} = 81$。
$\because 25 + 49 = 74 \neq 81$,$\therefore a^{2} + b^{2} \neq c^{2}$,
$\therefore \triangle ABC$不是直角三角形。
(3) $\because a = 15$,$b = 8$,$c = 17$,
$\therefore a^{2} = 225$,$b^{2} = 64$,$c^{2} = 289$。
$\because 225 + 64 = 289$,$\therefore a^{2} + b^{2} = c^{2}$,
$\therefore \triangle ABC$是直角三角形,$\angle C = 90^{\circ}$。
(4) $\because a = 41$,$b = 9$,$c = 40$,
$\therefore a^{2} = 1681$,$b^{2} = 81$,$c^{2} = 1600$。
$\because 81 + 1600 = 1681$,$\therefore b^{2} + c^{2} = a^{2}$,
$\therefore \triangle ABC$是直角三角形,$\angle A = 90^{\circ}$。
$\therefore a^{2} = 4$,$b^{2} = 9$,$c^{2} = 16$。
$\because 4 + 9 = 13 \neq 16$,$\therefore a^{2} + b^{2} \neq c^{2}$,
$\therefore \triangle ABC$不是直角三角形。
(2) $\because a = 5$,$b = 7$,$c = 9$,$\therefore a^{2} = 25$,$b^{2} = 49$,$c^{2} = 81$。
$\because 25 + 49 = 74 \neq 81$,$\therefore a^{2} + b^{2} \neq c^{2}$,
$\therefore \triangle ABC$不是直角三角形。
(3) $\because a = 15$,$b = 8$,$c = 17$,
$\therefore a^{2} = 225$,$b^{2} = 64$,$c^{2} = 289$。
$\because 225 + 64 = 289$,$\therefore a^{2} + b^{2} = c^{2}$,
$\therefore \triangle ABC$是直角三角形,$\angle C = 90^{\circ}$。
(4) $\because a = 41$,$b = 9$,$c = 40$,
$\therefore a^{2} = 1681$,$b^{2} = 81$,$c^{2} = 1600$。
$\because 81 + 1600 = 1681$,$\therefore b^{2} + c^{2} = a^{2}$,
$\therefore \triangle ABC$是直角三角形,$\angle A = 90^{\circ}$。
2. 已知$\triangle ABC$的三边长分别是$a$,$b$,$c$,且$a = m^{2}-1$,$b = 2m$,$c = m^{2}+1$,则$\triangle ABC$是直角三角形吗?请证明你的结论。
答案:解: $\triangle ABC$是直角三角形,证明如下:
$\because a^{2} + b^{2} = (m^{2} - 1)^{2} + (2m)^{2} = m^{4} - 2m^{2} + 1 + 4m^{2} = m^{4} + 2m^{2} + 1 = (m^{2} + 1)^{2} = c^{2}$,
$\therefore \triangle ABC$是直角三角形。
$\because a^{2} + b^{2} = (m^{2} - 1)^{2} + (2m)^{2} = m^{4} - 2m^{2} + 1 + 4m^{2} = m^{4} + 2m^{2} + 1 = (m^{2} + 1)^{2} = c^{2}$,
$\therefore \triangle ABC$是直角三角形。
3. 如图,在$\triangle ABC$中,点$D$是$BC$边上一点,连接$AD$,若$AB = 10$,$AC = 17$,$BD = 6$,$AD = 8$。
(1)求证:$\triangle ABD$是直角三角形;
(2)求$BC$的长。

(1)求证:$\triangle ABD$是直角三角形;
(2)求$BC$的长。

答案:(1) 证明: $\because BD = 6$,$AD = 8$,$AB = 10$,
$\therefore BD^{2} + AD^{2} = 6^{2} + 8^{2} = 100 = AB^{2}$,
$\therefore \triangle ABD$是直角三角形。
(2) 解: 由(1)知,$\triangle ABD$是直角三角形,$\angle ADB = 90^{\circ}$,
$\therefore \angle ADC = 90^{\circ}$,在$Rt\triangle ADC$中,$AD^{2} + CD^{2} = AC^{2}$,
$\because AD = 8$,$AC = 17$,$\therefore CD = 15$,
$\because BD = 6$,$\therefore BC = BD + CD = 6 + 15 = 21$。
$\therefore BD^{2} + AD^{2} = 6^{2} + 8^{2} = 100 = AB^{2}$,
$\therefore \triangle ABD$是直角三角形。
(2) 解: 由(1)知,$\triangle ABD$是直角三角形,$\angle ADB = 90^{\circ}$,
$\therefore \angle ADC = 90^{\circ}$,在$Rt\triangle ADC$中,$AD^{2} + CD^{2} = AC^{2}$,
$\because AD = 8$,$AC = 17$,$\therefore CD = 15$,
$\because BD = 6$,$\therefore BC = BD + CD = 6 + 15 = 21$。
4. 如图,在四边形$ABCD$中,$\angle B = 90^{\circ}$,$AB = 20$,$BC = 15$,$CD = 7$,$DA = 24$,求四边形$ABCD$的面积。


答案:
解: 连接$AC$。
$\because \angle B = 90^{\circ}$,$\therefore AC^{2} = AB^{2} + BC^{2} = 20^{2} + 15^{2} = 625 = 25^{2}$。
$\because 7^{2} + 24^{2} = 25^{2}$,$\therefore CD^{2} + DA^{2} = AC^{2}$,
$\therefore \triangle ADC$是直角三角形,$\angle ADC = 90^{\circ}$,
$\therefore$ 四边形$ABCD$的面积$= \triangle ABC$的面积$+ \triangle ADC$的面积
$= \frac{1}{2} × 20 × 15 + \frac{1}{2} × 7 × 24 = 234$。

解: 连接$AC$。
$\because \angle B = 90^{\circ}$,$\therefore AC^{2} = AB^{2} + BC^{2} = 20^{2} + 15^{2} = 625 = 25^{2}$。
$\because 7^{2} + 24^{2} = 25^{2}$,$\therefore CD^{2} + DA^{2} = AC^{2}$,
$\therefore \triangle ADC$是直角三角形,$\angle ADC = 90^{\circ}$,
$\therefore$ 四边形$ABCD$的面积$= \triangle ABC$的面积$+ \triangle ADC$的面积
$= \frac{1}{2} × 20 × 15 + \frac{1}{2} × 7 × 24 = 234$。
