1. 仔细观察下列等式:
第 1 个:5^{2}-1^{2}= 8×3; 第 2 个:9^{2}-5^{2}= 8×7;
第 3 个:13^{2}-9^{2}= 8×11; 第 4 个:17^{2}-13^{2}= 8×15;…(1) 请写出第 6 个等式:
第 1 个:5^{2}-1^{2}= 8×3; 第 2 个:9^{2}-5^{2}= 8×7;
第 3 个:13^{2}-9^{2}= 8×11; 第 4 个:17^{2}-13^{2}= 8×15;…(1) 请写出第 6 个等式:
$25^{2}-21^{2}=8×23$
;(2) 请写出第 n 个等式:$(4n+1)^{2}-(4n-3)^{2}=8(4n-1)$
;(3) 运用上述规律,计算:8×7+8×11+…+8×399+8×403。解:$8×7+8×11+... +8×399+8×403$
$=(9^{2}-5^{2})+(13^{2}-9^{2})+... +(401^{2}-397^{2})+(405^{2}-401^{2})$
$=9^{2}-5^{2}+13^{2}-9^{2}+... +401^{2}-397^{2}+405^{2}-401^{2}$
$=405^{2}-5^{2}$
$=164025-25$
$=164000.$
$=(9^{2}-5^{2})+(13^{2}-9^{2})+... +(401^{2}-397^{2})+(405^{2}-401^{2})$
$=9^{2}-5^{2}+13^{2}-9^{2}+... +401^{2}-397^{2}+405^{2}-401^{2}$
$=405^{2}-5^{2}$
$=164025-25$
$=164000.$
答案:1.(1)$25^{2}-21^{2}=8×23$
(2)$(4n+1)^{2}-(4n-3)^{2}=8(4n-1)$
(3)解:$8×7+8×11+... +8×399+8×403$
$=(9^{2}-5^{2})+(13^{2}-9^{2})+... +(401^{2}-397^{2})+(405^{2}-401^{2})$
$=9^{2}-5^{2}+13^{2}-9^{2}+... +401^{2}-397^{2}+405^{2}-401^{2}$
$=405^{2}-5^{2}$
$=164025-25$
$=164000.$
(2)$(4n+1)^{2}-(4n-3)^{2}=8(4n-1)$
(3)解:$8×7+8×11+... +8×399+8×403$
$=(9^{2}-5^{2})+(13^{2}-9^{2})+... +(401^{2}-397^{2})+(405^{2}-401^{2})$
$=9^{2}-5^{2}+13^{2}-9^{2}+... +401^{2}-397^{2}+405^{2}-401^{2}$
$=405^{2}-5^{2}$
$=164025-25$
$=164000.$
2. 观察下列等式:
第 1 个等式:$a_{1}= \frac{1}{1×2}= 1-\frac{1}{2};$ 第 2 个等式:$a_{2}= \frac{1}{2×3}= \frac{1}{2}-\frac{1}{3};$
第 3 个等式:$a_{3}= \frac{1}{3×4}= \frac{1}{3}-\frac{1}{4};$ 第 4 个等式:$a_{4}= \frac{1}{4×5}= \frac{1}{4}-\frac{1}{5};$…解答下列问题:(1) 按以上规律写出第 5 个等式:a_{5}= \frac{1}{5×6}=
第 1 个等式:$a_{1}= \frac{1}{1×2}= 1-\frac{1}{2};$ 第 2 个等式:$a_{2}= \frac{1}{2×3}= \frac{1}{2}-\frac{1}{3};$
第 3 个等式:$a_{3}= \frac{1}{3×4}= \frac{1}{3}-\frac{1}{4};$ 第 4 个等式:$a_{4}= \frac{1}{4×5}= \frac{1}{4}-\frac{1}{5};$…解答下列问题:(1) 按以上规律写出第 5 个等式:a_{5}= \frac{1}{5×6}=
$\frac {1}{5}-\frac {1}{6}$
;(2) 求 a_{1}+a_{2}+…+a_{2025} 的值;解:由(1)中的发现可知:
第n个等式为$a_{n}=\frac {1}{n(n+1)}=\frac {1}{n}-\frac {1}{n+1}$(n为正整数).
当$n=2025$时,
$a_{2025}=\frac {1}{2025×2026}=\frac {1}{2025}-\frac {1}{2026},$
所以$a_{1}+a_{2}+... +a_{2025}$
$=1-\frac {1}{2}+\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-\frac {1}{4}+... +\frac {1}{2025}-\frac {1}{2026}$
$=1-\frac {1}{2026}$
$=\frac {2025}{2026}.$
(3) 求$ \frac{1}{2×4}+\frac{1}{4×6}+\frac{1}{6×8}+…+\frac{1}{98×100} $的值。第n个等式为$a_{n}=\frac {1}{n(n+1)}=\frac {1}{n}-\frac {1}{n+1}$(n为正整数).
当$n=2025$时,
$a_{2025}=\frac {1}{2025×2026}=\frac {1}{2025}-\frac {1}{2026},$
所以$a_{1}+a_{2}+... +a_{2025}$
$=1-\frac {1}{2}+\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-\frac {1}{4}+... +\frac {1}{2025}-\frac {1}{2026}$
$=1-\frac {1}{2026}$
$=\frac {2025}{2026}.$
解:原式$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4})+\frac {1}{2}×(\frac {1}{4}-\frac {1}{6})+\frac {1}{2}×(\frac {1}{6}-\frac {1}{8})+... +\frac {1}{2}×(\frac {1}{98}-\frac {1}{100})$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4}+\frac {1}{4}-\frac {1}{6}+\frac {1}{6}-\frac {1}{8}+... +\frac {1}{98}-\frac {1}{100})$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{100})$
$=\frac {1}{2}×\frac {49}{100}$
$=\frac {49}{200}.$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4}+\frac {1}{4}-\frac {1}{6}+\frac {1}{6}-\frac {1}{8}+... +\frac {1}{98}-\frac {1}{100})$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{100})$
$=\frac {1}{2}×\frac {49}{100}$
$=\frac {49}{200}.$
答案:2.(1)$\frac {1}{5}-\frac {1}{6}$
(2)解:由(1)中的发现可知:
第n个等式为$a_{n}=\frac {1}{n(n+1)}=\frac {1}{n}-\frac {1}{n+1}$(n为正整数).
当$n=2025$时,
$a_{2025}=\frac {1}{2025×2026}=\frac {1}{2025}-\frac {1}{2026},$
所以$a_{1}+a_{2}+... +a_{2025}$
$=1-\frac {1}{2}+\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-\frac {1}{4}+... +\frac {1}{2025}-\frac {1}{2026}$
$=1-\frac {1}{2026}$
$=\frac {2025}{2026}.$
(3)解:原式$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4})+\frac {1}{2}×(\frac {1}{4}-\frac {1}{6})+\frac {1}{2}×(\frac {1}{6}-\frac {1}{8})+... +\frac {1}{2}×(\frac {1}{98}-\frac {1}{100})$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4}+\frac {1}{4}-\frac {1}{6}+\frac {1}{6}-\frac {1}{8}+... +\frac {1}{98}-\frac {1}{100})$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{100})$
$=\frac {1}{2}×\frac {49}{100}$
$=\frac {49}{200}.$
(2)解:由(1)中的发现可知:
第n个等式为$a_{n}=\frac {1}{n(n+1)}=\frac {1}{n}-\frac {1}{n+1}$(n为正整数).
当$n=2025$时,
$a_{2025}=\frac {1}{2025×2026}=\frac {1}{2025}-\frac {1}{2026},$
所以$a_{1}+a_{2}+... +a_{2025}$
$=1-\frac {1}{2}+\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-\frac {1}{4}+... +\frac {1}{2025}-\frac {1}{2026}$
$=1-\frac {1}{2026}$
$=\frac {2025}{2026}.$
(3)解:原式$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4})+\frac {1}{2}×(\frac {1}{4}-\frac {1}{6})+\frac {1}{2}×(\frac {1}{6}-\frac {1}{8})+... +\frac {1}{2}×(\frac {1}{98}-\frac {1}{100})$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{4}+\frac {1}{4}-\frac {1}{6}+\frac {1}{6}-\frac {1}{8}+... +\frac {1}{98}-\frac {1}{100})$
$=\frac {1}{2}×(\frac {1}{2}-\frac {1}{100})$
$=\frac {1}{2}×\frac {49}{100}$
$=\frac {49}{200}.$